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Let r denote the group of rational integral tXt matrices of de­
terminant 1. If ft is a positive integer, T(n) denotes the principal 
congruence subgroup of T of level ft, consisting of all elements of V 
congruent modulo ft to a scalar matrix. The subgroup of T(n) con­
sisting of all elements of T congruent modulo ft to the identity matrix 
is denoted by Ti(ft). Then T(n), Ti(ft) are normal subgroups of I\ A 
subgroup G of T containing a principal congruence subgroup T(n) 
is termed a congruence subgroup, and is said to be of level ft if ft is the 
least such integer. Notice that Ti(ft) is not in general a congruence 
subgroup, according to the definition above. 

Let p be a prime. Let SL(/, p) denote the group of tXt matrices 
with elements from GF(p) and determinant 1, and let H(t, p) denote 
the normal subgroup of SL(£, p) consisting of all scalar matrices. 
Then 

SL(/, p) ^ T/Up), H{t} p) Si T(p)/Tx(p)9 

and SL(J, p), H(t, p) are of orders 

#^n(i-ro,&#-i) 
i-2 

respectively. In his book on the linear groups [l] Dickson proves 
that for t>2, H(t, p) is a maximal normal subgroup of SL(£, p) and 
this of course implies that T(p) is a maximal normal subgroup of T. 
This result is used to prove the theorem that follows: 

THEOREM 1. Suppose that t>2. Then every normal congruence sub­
group of odd level of Y is a principal congruence subgroup. 

The theorem is also true for 2 = 2, if the level is prime to 6. (The 
case t = 2 for the group of linear fractional transformations has been 
treated in [3].) Since the structure of the proof of Theorem 1 is 
identical with that of the proof for t = 2 given in [3], we only indicate 
the points of difference, and refer the reader to [3] for full details. 
The proof is arranged for an induction and what is actually proved 
is the slightly more general theorem that follows: 

1 The preparation of this note was supported by the Office of Naval Research. 
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THEOREM 2. Suppose that t>2. Let mf n be positive integers, m odd. 
Let G be a normal subgroup of Y such that Y(n)DGZ)Y(mn). Then 
G = Y(nd), d\m. 

In order to prove this theorem generally it is necessary to give 
special proofs for the cases when m is a prime or the square of a 
prime. If m is any prime and (in, n) = 1 then the theorem of Dickson 
referred to above implies the result. If m is an odd prime and m\n, 
then Y(n)/Y(mn) is abelian of type (m, m, « • • , m) and it is not 
difficult to show that the normality of G implies that G = Y(n) or 
Y(mn). If m is the square of an odd prime, then the proofs given in 
[3] go over unchanged, with one exception: the commutator sub­
group r ' of T is no longer of index 6 in Y (as is the case for t = 2 and 
T the group of linear fractional transformations) but is in fact just Y 
itself. This has been proved by Hua and Reiner (see [2]), although 
some care must be taken in interpreting their results since they con­
sider the more general unimodular group in which the determinant 
is allowed to be — 1 as well. The formal structure of the induction 
remains unchanged. 
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