study any divisible semigroup, we need consider all congruences of $\overline{R} = \prod_{\alpha} R_{\alpha}$. For this purpose the following general result is used: A congruence of a commutative cancellative semigroup S is determined by a system of ideals of S and a system of subgroups of the quotient group of S.

REFERENCES

- 1. L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958.
- 2. V. R. Hancock, Commutative Schreier extensions of semi-groups, Dissertation, Tulane University of Louisiana, New Orleans, La., 1960.
- 3. L. Ya. Kulikov, On the theory of Abelian groups of arbitrary power, Mat. Sb. (N.S.) 16(58) (1945), 129-162. (Russian)
- 4. T. Tamura and D. G. Burnell, A note on the extension of semigroups with operators, Proc. Japan Acad. 38 (1962), 495-498.
 - 5. ——, Extension of groupoids with operators (to appear).
 - 6. T. Tamura, Commutative divisible semigroups (to appear).

University of California, Davis

ALMOST LOCALLY FLAT EMBEDDINGS OF S^{n-1} IN S^n

BY J. C. CANTRELL

Communicated by Deane Montgomery, May 7, 1963

- 1. Introduction. In this paper we use the terminology introduced by Brown in [2]. We consider an (n-1)-sphere S embedded in S^n and try to determine if the components of S^n-S have closures that are n-cells (i.e. if S is flat). Brown has shown that if S is locally flat at each of its points, then S is bi-collared [2]. Hence, in this case, S is flat. The principal result of this paper is that if S is not flat in S^n , n>3, and E is the set of points at which S fails to be locally flat, then E contains more than one point. This is a fundamental point at which the embedding problems for n>3 differ from those for n=3. Throughout this paper we will assume that n>3.
- 2. Outline of proof of principal result. By combining Theorem 1 of [2] and Theorem 2 of [1] one can establish the following.
- LEMMA 1. Let S be an (n-1)-sphere in S^n and G a component of S^n-S . If S is locally collared in Cl G, then S is collared in Cl G and Cl G is an n-cell.

For $0 \le t \le 1$ we let A_t be the solid ball in E^n which is centered at the origin and has radius t. Let B be the solid ball in E^n which is centered at -1 on the x_n -axis and has radius 2. With the aid of Theorem 1 of [2] we are able to establish the following lemma.

LEMMA 2. Let S be an (n-1)-sphere in S^n , $p \in S$, and G and H the components of $S^n - S$. If S is locally flat at each point of S - p and S has a local collar in Cl H at p, then there is a homeomorphism f carrying $Cl(B - A_{1/2})$ into S^n such that (1) $h(Bd A_1) = S$, (2) $h[(0, 0, \dots, 0, 1)] = p$, and (3) $h(Bd A_{1/2}) \subset H$.

We keep the notation of Lemma 2 and let L be the closed arc in the x_n -axis from $(0, 0, \cdots, 0, 1/2)$ to $(0, 0, \cdots, 0, 1)$, and set L'=f(L). There is a continuous mapping h of $\operatorname{Cl}(B-A_{1/2})$ onto itself such that h is the identity on $\operatorname{Bd} B$, $h(\operatorname{Bd} A_{1/2})=\operatorname{Bd} A_1$, and h carries $\operatorname{Cl}(B-A_{1/2})-L$ homeomorphically onto $\operatorname{Cl}(B-A_1)-(0,0,\cdots,0,1)$. Thus, if K is the component of $S^n-f(\operatorname{Bd} A_{1/2})$ which contains G, then there is a continuous mapping g of $\operatorname{Cl} K$ onto $\operatorname{Cl} G$ which carries $\operatorname{Cl} K - L'$ homeomorphically onto $\operatorname{Cl} G - p$. We keep in mind that $\operatorname{Cl} K$ is an n-cell and observe that the following statement is true. If there is a continuous mapping k of $\operatorname{Cl} K$ onto $\operatorname{Cl} K$ such that $h(L')=f[(0,0,\cdots,0,1/2)]$ and k carries $\operatorname{Cl} K - L'$ homeomorphically onto $\operatorname{Cl} K - f[(0,0,\cdots,0,1/2)]$, then $\operatorname{Cl} G$ is an n-cell (kg^{-1}) is a homeomorphism of $\operatorname{Cl} G$ onto $\operatorname{Cl} K$.

Thus in order to conclude that Cl G is an n-cell (and, hence that S is flat) it suffices to construct the mapping k above. If Cl K and L' are polyhedral there is no difficulty. So we assign to Cl K a combinatorial triangulation and proceed to move L' onto a polyhedral arc in Cl K. By results of Homma and Gluck [4] we may construct a homeomorphism r_1 of Cl K onto itself so that $r_1(L')$ is locally polyhedral at each point of $r_1(L'-p)=r_1(L')-r_1(p)$. Then Lemma 2 of [3] is used to obtain a homeomorphism r_2 of Cl K onto itself so that $r_2r_1(L')$ is polyhedral. Then the desired mapping k can be constructed. These results give the following theorem.

THEOREM 1. If S is as in Lemma 2, then S is flat.

With an adaptation of Mazur's technique [5] we are able to remove the requirement of local collars in $Cl\ H$ at each point of S and establish the following theorem.

THEOREM 2. Let S be an (n-1)-sphere in S^n , $p \in S$, and G a component of $S^n - S$. If S - p is locally collared in Cl G, then Cl G is an n-cell.

COROLLARY. If S is an (n-1)-sphere in S^n , $p \in S$, and S is locally flat at each point of S-p, then S is flat.

3. Conjectures. If S is nonflat in S^n , n > 3, and E is the set of points of S at which S fails to be locally flat, we have seen that E must contain more than one point. The natural question is: how many points must E contain? It is conjectured that there are no isolated points of E, and therefore E contains a Cantor set.

We say that the k-cell D in E^n is flat if there is a homeomorphism h of E^n onto itself such that h(D) is a standard unit cell in the hyperplane $x_n = x_{n-1} = \cdots = x_{k+1} = 0$. The author has reduced the above conjecture to the following.

CONJECTURE. If $D = D_1 \cup D_2$, where D_1 and D_2 are flat (n-1)-cells in E^n , n > 3, and $D_1 \cap D_2 = \operatorname{Bd} D_1 \cap \operatorname{Bd} D_2$ is a flat (n-2)-cell, then D is flat.

BIBLIOGRAPHY

- 1. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 2. ——, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
- 3. J. C. Cantrell and C. H. Edwards, Jr., Almost locally polyhedral curves in Euclidean n-space, Trans. Amer. Math. Soc. 107 (1963), 451-457.
 - 4. H. Gluck, Unknotting S1 in S4, Bull. Amer. Math. Soc. 69 (1963), 91-94.
 - 5. B. Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59-65.

University of Georgia