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sphere, then we have found a Galois extension of the field of rational 
functions, such that the Galois group is isomorphic to the preassigned 
group G. 
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1. Introduction. Let f(z) = ^2Q anz
n be an entire (transcendental) 

function and let 

M(r) = M(r, ƒ) = max | ƒ(*) | , /*(r) = /i(r,/) = max ( | an\ rn). 
| z | = r n 

Erdös conjectured that [ l ] for every entire function, either 

(1.1) U = U(f) = lim sup n(r)/M(r) >u = u(J) = lim inf M(r)/M(r), 
r—*oo r—+oo 

or 

(1.2) [/(ƒ) - 0. 

We prove this conjecture, except in one case, when broadly speaking 
the Taylor series for f(z) has "wide latent" gaps. For r>0, let v(r) 
= max {n\ix{r) = | a w | r n ) , and denote by {pn} the sequence of jump-

1 The work of this author was supported by U. S. National Science Foundation 
grant N.S.F. GP-209. 
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points of v(r), so that OSpiSp* â • • # , limnH>00pn= oo, and v{r)—n 
when pnâ^<pn+i [2, p. 4] . Let {w*} be the range of v{r) for 0<r< 00 
and i? = lim sup*.**, {nk+i-nk}, £ = lim supn+„pn+1/pn. 

THEOREM 1. 

(1.3) IfL>l, then U>u. 
(1.4) IfL=l,R<°o,thenU=0. 
(1.5) Suppose that L= 1, i? = 00 a^d 

lim { p n , / p n , + p } n * + ^ + ^ = 1, 

for p = l, 2, • • • , tóe/* £7=0. 

COROLLARY, /ƒ 

(1.6) lim inf log M(f)/(log r)2 < 00 
r-*oo 

/Aew U>u. 

It is not possible to improve on the hypothesis (1.6), for we have 

THEOREM 2. Given any function yp{x) tending to infinity {howsoever 
slowly) with x, there exists an entire function f {z), f or which £/=0, and 
as r tends to infinity, log M{r, ƒ) ==(?((log r)hl/{r)). 

2. Lemma l.2 u(J)£2/w. 

PROOF. Suppose \z\ =r is a value such that at least two terms 
akZk have moduli equal to p,{r). If these terms are anz

n and amzm, then 

~ + ~ - Ï 3 Ü J H T ) ' + ( Ï ) > 
Choose z such that arg {anz

n) =a rg (aw2w). Then 

2/i(r) ^ — — I I 1 + e«**M\d9 = — • 
2TT J 0 ÎT 

L E M M A 2. Let 

.. . , Pn+l f ,. SUp log^W /Ö, 
hmmf = /; lim # = < 

n-*» pn r->« inf (logr)2 \q* 
Then 

1/2 log Z, g J â Ô £ 1/2 log Ï. 

2 This lemma is due to Dr. J. Clunie. We are thankful to him for communicating 
this result to one of us. 
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We omit the proof which is straightforward. 

3. Proof of Theorem 1. If P(z) is any polynomial, then 

M(r, ƒ + P)/M(r, ƒ + P) ~ „(r, ƒ)/#(r, ƒ) 

and so we may suppose a0= 1. We have then 0 <pi^P2 • • • . Let 

(3.1) F(z) - 1 + f > / p i • • • P.. 
i 

Then F(a) is an entire function and M(r,f) g F(r), /«(r, ƒ) =n(r, F) for 
all r. Let KLi<L. There exists a sequence \np) such that, setting 
pn=p(n), 

(3.2) p(»p + l)/p(%,) > LI, p = 1, 2, • • • . 

Let z= TFp(«p). If 1< | W\ <Lh then for all p, 

(3.3) 1 < | W | < p(»p + l)/p(«,) ; p(wp) < | z| < p(«* + 1). 

Define for these values of z, 

/•(*, /0 = M(Z, ƒ) = M(^PK), ƒ) = ( W W W P C D • • • P(%). 

Then \n(s,f)\ =M( |z | , ƒ), and from (3.1)-(3.3) 

*(H) _ F(\w\P(nP)) 
/ i ( | s | , F ) M ( | tF |p(%),F) -

where 

c(w) - i + £ | PF|-' + £ (| w\ LT1Y. 
1 1 

Define 

4>p(W) =f(WP(np))MWp(np)), 

and let 0 = {PFJ 1< | W\ <Li}. For PTGQ, we have 

| *,(W0 | SM(\W\ p(np)J)M| TF| P W , i ) g C(W0 

for all p. Hence <t>p(W) is analytic in Q for all £ and the family 
J0p(W) | is uniformly bounded on every compact subset of K. Hence 
\4>P(W)} is a normal family and so there exists a sequence {pk} such 
that {<t>Pk{W)} converges uniformly to a function G(W) on every com­
pact subset of Q, and G(W) is finite in Q. Let KR<Li. Then 
{^(W7)} converges uniformly to G(W) on \W\ ~R. Now 
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| M(R, <t>Pk) - M(R, G) | g max \4Pk(W) - G{W) | , 
|TPl=ft 

and since by uniform convergence 

lim max | <t>Pk(W) - G(W) | = 0, 

we have 

Now 

Hence 

lim M(R, <t>Pk) = M(R, G). 

M(R, <}>Pk) = max 
\z\ ~Rp(nP]) 

ƒ(«) 
M(Z) 

M ( J ? P ( % ) , / ) 

üf(2?,G) = lim üf(2?p(W„),/)/M(i2p(%t),/). 

Consider first the case when G(W) is a constant on 0. Then for 
l < i ? < L i , 

G(W) = — : f - ^ dW = — ; f f lim <t>Pk(W)/W) dW. 

By considering the Laurent expansion of <t>Pk(W) about the origin, 
we obtain 

l - T ~ : f {*pJW)/w}dW, 
iTTlJ \W\~R 

and so 

G(W) = 1 = M(R,G) = lim M(Rp(nPk)J)MRp(nPk),f). 
P fc-co 

Now by Lemma 1, lim sup,..»* M(ryf)/fx(rff) ^T/2 and so U(f)>u(f). 
If G(W) is not a constant, then let 1 <Ri<R2<Rz<Li. Since G (1*0 
is analytic for i ? i ^ | W\ ^R$, | G(W)\ assumes its maximum, for this 
closed region on either | W\ = R\ or ] W\ =Rz or both. Hence 

M(R2, G) < meix{M(Rh G), M(Rh G)} = M{Rh G) 

say. Then 

r M(RiP(nPk),f) M(R2P(nPk),f) 
lim 9e lim 
*— n(Rip(nPk),f) *— ii(R2p{nPk)J) 

file:///W/~R
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and so U(f)>u(f) and (1.3) is proved. 

To prove (1.4), (1.5) we may assume ao = l. Then 

p(l) > 0, p(nk) < p(m + 1) = • • • = p(nk+i) < • • • , k = 1, 2, • • • . 

Further 

{M(r,/)}2 i> J2 I an\*r** è 1 + Z W P ( 1 ) * ' • P ( 0 } 2 -
0 1 

Hence for p(rik) ^r<p(nk-\-l), 

\M(r)\ 2 / r \*(nk+l-nk) 

l M(r) ƒ W + 1)/ 

( r \ 2<»*+l-njfc) / r \ 2 

p(w* + 1) / Kfifa+i + 1)/ 

(3.4) 
. 2(nA;+2~nA;+i) 

+ 1——r) H - ^ + 

and (1.4) follows. To prove (1.5) we note that the second term, third 
term, • • • pth term in the right side of (3.4) tend to 1, as k—> 00, and 
so £/(ƒ)=(). 

PROOF OF COROLLARY. By Lemma 2 we must have L> 1, and so by 
(1.3), U>u. 

The proof of Theorem 2 and the bounds for U and u will be pub­
lished elsewhere.3 
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