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Since its inception some thirty years ago the theory of quantum 
fields has come to be recognized as a fundamental component in any 
comprehensive description of the microcosmic physical world. The 
outstanding successes of the theory in this role indicate that its cen­
tral features will almost surely persist in some form in whatever 
revisions of our view of the world are required by the discovery of 
new evidence. Yet in spite of its successes, this theory has been 
marred by the presence of internal difficulties, and the stubborn 
persistence of these difficulties against the best efforts of two genera­
tions has led to the wide-spread belief that the theory must somehow 
be founded on incompatible assumptions. 

The question of the consistency of quantum field theory can be re­
stated in purely mathematical terms, and in this form it becomes sus­
ceptible to a rigorous mathematical analysis. Our purpose here is to 
describe briefly the form this question takes and to present a program 
for resolving it which seems to us to offer a chance of success. 

We begin by recalling that quantum field theory assumes that the 
physical world is made up of elementary particles of various types, 
and that each type of particle is described by a quantum field <j> 
satisfying at least the following conditions [3]. 

(1) Quantum condition. 0 is a tempered distribution defined on 
the Lorentz space-time manifold with values in a ring of (unbounded) 
operators acting on a fixed Hubert space 3C. 

(2) Covariance condition. <j> transforms covariantly according to a 
given (physically admissible) unitary representation U of the under­
lying Lorentz group. 

(3) Local commutativity. [<£(ƒ)> 0(g)]± = O whenever the test func­
tions/and g have simultaneous supports.2 

(4) Existence of a vacuum. There exists a vector o) in 5C, invariant 
under [/, which lies in the domain of all polynomial combinations of 
the field operators. 

Examples of fields satisfying these conditions are known; they are 
the so-called free fields. There is essentially one irreducible free field 

1 Operated with support from the U. S. Army, Navy, and Air Force. 
* The choice of sign here is determined by Ut via the well-known connection be­

tween spin and statistics. 
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for each irreducible physically admissible representation of the 
Lorentz group [2], These fields cannot be used, however, to describe 
interactions among particles, and apart from obvious combinations, 
no other quantum fields are known. 

The thing that characterizes a particular quantum field $, of course, 
is its behavior under U. In practice this behavior is determined by 
specifying the connection between <j> and U, either directly, by ex­
pressing the generators of U (i.e., the linear and angular momentum 
tensors) in terms of <j>, or indirectly, by prescribing conditions on $ 
via a system of field equations or an action principle. The actual 
prescription is severely limited by considerations of invariance and 
simplicity. In addition we shall require that the resulting fields admit 
a scattering operator, in the sense described below. Apparently only 
these fields are of any physical interest; these we shall call physical 
fields. We shall say that a physical field is trivial if the associated 
scattering operator reduces to the identity, since such fields are physi­
cally indistinguishable from free fields. 

The consistency problem may now be restated as follows: 
Do there exist any nontrivial physical quantum fields} 

We maintain that the answer is affirmative, and we present here a 
program for establishing the existence of these fields. This program 
consists of implementing the construction of these fields sketched by 
F. J. Dyson [ l ] with a careful analysis of the underlying mathe­
matical difficulties. 

We begin by fixing a time frame and prescribing in this frame a 
complete set of free fields {#i}, one for each type of particle in the 
system under study. These fields will play the role of the incoming 
fields. In terms of the incoming fields we form the complete Hamil-
tonian H of the system as a sum of a free term iT0, governing the 
behavior of the incoming fields, and an interaction term Hi deter­
mining the behavior of the coupled system. For most systems of 
physical interest it is well known that the free term is well-defined and 
essentially self-adjoint on the state space associated with the incom­
ing fields. The interaction term, on the other hand, usually involves 
products of the incoming fields which are a priori undefined and in­
deed undefinable. In order to circumvent this difficulty we shall 
provisionally replace each of the free fields <f>i appearing in the inter­
action term by a modified field <£»(p) defined by the relation 

(1) 0<(p) = p*<t>i 

where * denotes a four-dimensional convolution, and p a suitably 
chosen scalar factor of the form p(x)—p(x)ô(t). Here p(x) approxi-
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mates ô(x) and is sufficiently smooth to ensure that all relevant prod­
ucts are well-defined, but is otherwise quite arbitrary. The essential 
dynamical properties of the total Hamiltonian are not affected by 
this modification, so long as we do not change the time frame. 

Our first task is to establish 

PROPOSITION 1. H is well-defined and essentially self-adjoint on the 
free state space. 

The interaction term Hi will contain a number of parameters, in­
cluding mass, charge, and scale corrections, which are in principle 
unobservable and hence remain at our disposal. By suitably adjust­
ing these parameters, we proceed to modify the total Hamiltonian 
so that its spectrum includes that of the free Hamiltonian. Thus we 
establish 

PROPOSITION 2. The spectrum of H includes the spectrum of Ho. 

Next we form the unitary operators exp(iH0t) and exp(iHt), and 
put W(t)=exp(-iHt) exp(+iHot) and W(f, tf) = W-l(t)W(t'). In 
terms of these operators we formulate 

PROPOSITION 3. The weak limits W(t, ± <*>) = l im^ ± 0 0 W(t, t') exist, 
and satisfy the relation HW(0, ± <*>) = W(0, ± oo)£T0. 

This limit is a bounded operator on 3C, but it need not be unitary, 
and it is conceivable that it be identically zero. In order to exclude 
this possibility, we formulate 

PROPOSITION 4. Iff is any state 5^0, then Wit, ± oo)/^0. 

Now if we resolve Wit, ± oo ) according to the canonical polar de­
composition as a product U(t, ± oo ) T, with U(t, ± oo ) a partial isom-
etry and T positive, then it is clear from the propositions above that 
U(t, ± oo ) must be semi-unitary, and that T is independent of tt 

commutes with H0, and admits an inverse T"1 (perhaps unbounded), 
with r - 1 ^ ! . If we put Writ, t') = T~lW(t, t')T~\ then Wr(t, t') is well 
defined on the domain of T~l and satisfies the following weak limit 
relations. 

(2) lim Wr(t,t') = T~lU(t, ±oo), 
t'-*± oo 

(3) lim lim Wr(t, t') = I, 
t->± oo t'-*± oo 

(4) lim lim Wr{t, t') = C/(0, + oo)-itf(0, - oo) = Sr. 

In particular, the renormalized scattering operator Sr defined in this way 
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is unitary whenever the ranges of W(0, — 00) and W(0, +09) coincide. 
Now we turn to the coupled fields. We define the Heisenberg fields 

4>h in terms of the incoming free fields fa via the relation 

(5) **(*) = U(t, - *>)4>/W(t, ~ «0-1. 

The Heisenberg fields are then unitarily equivalent with the free 
fields, and their time dependence is governed by the free Hamiltonian 
Ho (which is related to the Heisenberg fields in the same way that the 
total Hamiltonian H is related to the free fields) by the relation 

(6) 4>h(t) = eWfaiÖie-w. 

A s /—> — 001 however, the Heisenberg fields do not necessarily reduce 
to the free fields. In fact, if we resolve the free fields into positive and 
negative frequencies, $/ = # / + # 7 > a n d define 

(7) 4>t(t) = U(t, - » )*ƒ(/) U(t, - «> )-i, 

then we find that as /—» — 00, 

( 8 ) 4>t(t)~T~l$(t)T, 
fh(t)~T<fr(t)T~\ 

This suggests that we define the renormalized fields according to 

tfftO = T<t>t(t)T~\ 

(9) fr{t) = r " V l ( 0 r , 
*r(0 = *!"(/) + <t>7(t) 

and establish 

PROPOSITION 5. The renormalized fields are weakly asymptotic to the 
incoming fields as t-+ — <*>. 

The functional dependence of the renormalized scattering operator 
Sr upon the renormalized fields is exactly the same as that of the un-
renormalized scattering operator 5 = TSrT— W(0, + oo)- 1 !^^ , — oo) 
upon the Heisenberg fields; namely, via the Dyson expansion. Thus 
the usual rules of computation remain valid, though in some cases the 
perturbation series may not converge. The functional dependence of 
the free and total Hamiltonians upon the renormalized fields is less 
straightforward and apparently has no simple form. 

All of the preceding considerations are based on the presence of the 
form factors p in the interaction Hamiltonian. I t remains to see what 
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happens when these form factors are removed. More precisely, we let 
each of the form factors p(x) tend to the point factor S(x) in an ap­
propriate sense of convergence and investigate the behavior of the 
various expressions we have developed in this limit. The key results 
can be formulated as follows: 

PROPOSITION 6. AS p—>5 the renormalized scattering operator Sr ad­
mits a strong limits independent of the choice of p. 

PROPOSITION 7.-45 p—>ô the renormalized fields <j>r admit a strong 
limit as four-dimensional operator-valued distributions 1 independent of 
the choice of p. 

PROPOSITION 8. The limiting renormalized fields satisfy the quantum 
field conditions ( l ) -(4) . 

PROPOSITION 9. The limiting renormalized fields are weakly asymp­
totic to the free fields $in as /—» — oo and 0Out o>s /—»+ °o, and these fields 
are related by the formula $out==»Sr$in»S71. 

Neither W(t, t') and Wr(t, t')y nor W(t, ± oo) and U(t, ± oo), nor 
the Heisenberg fields, nor the instantaneous renormalized fields will 
in general admit limits as p—*ô. Only the renormalized scattering 
operator and space-time averages of the renormalized fields admit 
these limits. Moreover, the limiting fields are not unitarily equivalent 
with the free fields, and the so-called interaction representations of 
these fields do not exist. This fact accounts for the difficulties in deal­
ing with these fields and explains the necessity for introducing form 
factors in the Hamiltonians. 

Proposition 9 completes our program for the construction of the 
required quantum fields. 

We have succeeded in carrying out the first part of this program 
for those systems for which the dependence of the total Hamiltonian 
upon the Boson fields is at most quadratic. For such systems we have 
rigorously established the validity of Propositions (l)-(5) for all 
values of the coupling parameter. These systems include the photon-
electron system, the pion-nucleon system, and the four-Fermion sys­
tem, but exclude the pion-pion system and its analogues. A recent 
result of Galindo [4] indicates that the situation is quite different 
for multiple Boson interactions, and that our results cannot be ex­
pected to apply. 

We have also established the validity of Propositions (6)~(9) for 
certain special cases, including8 (1) a Boson field with external scalar 

8 In each case the role of the Lorentz group is taken over by whatever symmetry 
group is appropriate for the system. 
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source, (2) a Fermion field with external scalar source, (3) a Fermion 
field in the Lee model, and (4) a restricted form of the photon-electron 
system, with no positron states. The extension of these results to the 
complete photon-electron system is now under study. 

In the case of the Lee model, we found that the limiting renormal­
ized Fermion field produced by our program is identical with the in­
coming free field, and hence is trivial. This can be avoided only by 
requiring that the (unrenormalized) coupling constant be complex. 
At first sight this procedure seems to destroy the validity of the whole 
theory, since then the total Hamiltonian is apparently no longer self-
adjoint. But a closer investigation reveals that actually it is the 
Heisenberg fields which are not self-ad joint; the total Hamiltonian 
constructed from these fields is self-adjoint, and in fact is equal to 
the free Hamiltonian constructed from the incoming free fields. 
Moreover, all of our results depend analytically upon the coupling 
constant, and hence remain valid for complex as well as real values of 
this parameter, provided we generalize suitably the notions of self-
adjoint and unitary operators. Thus for complex coupling constants 
it can happen that the Heisenberg fields are not self-ad joint and yet 
the renormalized fields are, that the wave operators £7(0, ±00) are 
not unitary, and yet the scattering operator is. In this case the final 
results are perfectly valid; only the original formulation, in terms of 
Heisenberg fields, is at fault. At any rate this argument is certainly 
the key to the puzzle of the Lee model, and probably also plays an 
essential role in the complete photon-electron system. 
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