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Let p be a positive prime number, and Tp be the semigroup of all 
positive rational numbers of the form j/pi with respect to the usual 
addition. Let pu p2, • • • , pn be distinct positive prime numbers. 
Then TP1X • • • XTPn is a completely exclusive direct product. 
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Introduction. In his paper [ ló] Gel'fand posed the general problem 
of investigating the relationship between topological and analytical 
invariants of elliptic differential operators. In particular he suggested 
that it should be possible to express the index of an elliptic operator 
(see §1 for the definition) in topological terms. This problem has 
been taken up by Agranovic [2; 3] , Dynin [3; 14; 15], Seeley [20; 21 ] 
and Vol'pert [22 ] who have solved it in special cases. The purpose of 
this paper is to give a general formula for the index of an elliptic 
operator on any compact oriented differentiable manifold (Theorem 
1). As a special case of this formula we get the Hirzebruch-Riemann-
Roch theorem for any compact complex manifold (Theorem 3). This 
was previously known only for projective algebraic manifolds. Some 
other special cases, of interest in differential topology, are discussed 
in §3. 

We are greatly indebted to A. P. Calderon, L. Nirenberg, and 
R. T. Seeley for their generous help. 

1. Elliptic operators. Let X be a compact oriented smooth mani-
1 Part of this work was done with the first author supported by the National 

Science Foundation and the second author holding a Sloan Fellowship. 
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fold, E, F two smooth complex vector bundles over X. We shall con­
sider linear differential operators 

D: T(E) -> r (F) , 

i.e., linear operators defined on the spaces T of smooth sections and 
expressible locally by a matrix of partial derivatives. The extra gen­
erality involved in considering vector bundles presents no serious 
difficulties and it is quite essential in a systematic treatment on 
manifolds, since all the geometrically interesting operators operate on 
vector bundles (cf. §3). 

Let T*(X) denote the cotangent vector bundle of Xy S(X) the 
unit sphere bundle in T*(X) (relative to some Riemannian metric), 
7r: S(X)—>X the projection. Then associated with D there is a vector 
bundle homomorphism 

er(JD) : 7T*£ - > TT*F 

which is called the symbol of D. In terms of local coordinates a(D) 
is obtained from D by replacing d/dxj by i%j in the highest order 
terms of D (£y is the j t h coordinate in the cotangent bundle). D is 
elliptic if a(D) is an isomorphism.2 

One of the basic properties of elliptic operators is that Ker D (i.e., 
the null space) and Coker D = T(F)/DT(E) are both finite-dimen­
sional. The index y(D) is defined by 

y(D) = dim Ker D - dim Coker D. 

If D*:T(F)-*T{E) denotes the formal adjoint of D (relative to 
metrics in £ , F, X) then D* is also elliptic and 

Coker D S Ker D*, 

so that y(D) = dim Ker D - d i m Ker D*. 
The problem is to express 7(D) in terms of cr(D). More precisely 

what we shall do is to associate to a(D) a cohomological invariant, 
denoted by ch(P) , and then to give an explicit formula for y(D) in 
terms of ch(D) and of the characteristic (Pontrjagin) classes of X. 

2. The index formula. If E, F are trivial bundles of dimension m 
then <r(D) is essentially a map S(X)->GL(rn, C). This makes it clear 
that the homotopy of the linear group, and in particular the Bott 
periodicity theorems [8], will be of crucial importance. The appropri­
ate machinery for questions of this kind is provided by the Grothen-
dieck groups K(X) introduced in [5] (cf. also [4]). Roughly speaking 
K(X) is the abelian group generated by the complex vector bundles 

2 This implies of course that E, F have the same dimension. 
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on X. The tensor product of bundles makes K(X) into a commutative 
ring. An important cohomological invariant is provided by the Chern 
character which is a ring homomorphism 

ch:K(X)->H*(X; Q) 

of K(X) into the rational cohomology ring. 
Two vector bundles E, F on a space Y with an isomorphism <r on 

a subspace3 F 0 define a difference element [6, §3] 

d(E,F,*)eK(Y/Yo) 

where Y/YQ is Y with F0 pinched to a point. Hence, if we denote by 
B(X) the unit ball bundle of T*(X), an elliptic operator D defines an 
element 

d(p*E, p*F, <r(D)) G K(B(X)/S(X)) 

(where p: B(X)—>X is the projection) and hence an element 

ch d(E, F, <r(D)) E H*(B(X)/S(X); Q). 

Using the Thorn isomorphism 

<£*: HKX; Q) 9É H«+h(B(X)/S{X) ; Q) (n = dim X) 

we obtain finally the element 

*•-* ch d(E, F, a(D)) G H*(X; Q) 

which we shall simply denote by ch <r(D) or just ch(JD). 
We recall next the definition of the Todd class. For any w-dimen-

sional complex vector bundle £ we define 3(£) by putting 

3(0 = I I *— where ch £ = J^ e*< 
*-i 1 - r*« *.! 

and the Xî a re of degree 2. The elementary symmetric functions of the 
Xi are the Chern classes c»(£), so that 3 (J) is given by a power series 
in the c*(£). For a real vector bundle rj we define 

3(*) = 30? ® * C) 

so that 5(i|) will be given by a power series in the Chern classes of 
V ®R C, i.e., in the Pontrjagin classes of 17. For a differentiate mani­
fold4 X we define 

8 We assume YQ a "reasonable" subspace, e.g., a subcomplex. 
4 If F is a complex manifold with X as underlying differentiate manifold, one 

must not confuse T( Y) with T(X)®RC. 
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3(X) = 3(Z\X)) 

where T{X) is the tangent bundle of X. Thus, if the Pontrjagin classes 
of X are as usual regarded as the elementary symmetric functions in 
jjy the Todd class is given by: 

5(1) = n - ^ — = ^ - • 
y 1 - «nv 1 - & 

For any a(E.H*(X; Q) we denote by a[X] the value of the top-
dimensional component of a on the fundamental homology class of X. 

With these definitions we can now state our main result: 
THEOREM 1. For any elliptic differential operator D on a compact 

oriented differentiable manifold X the index y(D) is given by the formula 

y(D) = {ch(Z>)-3(X)}[X]. 

REMARKS. 1. This formula applies also to elliptic singular integral 
operators (cf. §4). 

2. In some special cases one can deduce from Theorem 1 that 
7 ( 0 ) = 0 (cf. (3.5)). 

3. The right-hand side of this equation gives, a priori, only a 
rational number. I t is a consequence of the theorem that this number 
must be an integer (cf. §3). 

3. Special cases. The most interesting differential operators are 
those associated with some geometrical structure on X in the follow­
ing way. Let G be a Lie group, V a fixed real oriented G-module, 
V* its dual. Then a G-structure on X will mean a principal G-bundle 
P on X together with an isomorphism (of oriented bundles) 

(A) PXoV^T(X) 

where PXo V is the vector bundle associated to P by the G-module 
V. A differential operator D: T(E)—>T(F) of order k is said to be 
associated to the G-structure of X if 

(i) there are complex G-modules Mt N and isomorphisms 

(B) PXGMSÉE, PXQN9=ÉF, 

(ii) there is a G-map 

V* -> Hom(M, N) 

which is polynomial of degree k and, via the isomorphisms (A) and 
(B), induces the symbol a(D). 

For such operators we have the following theorem which gives a 
universal formula for ch D. 
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THEOREM 2. Let X have a G-structure, dim V~2l, let the image of 
G in Aut V have rank Z, and suppose D : T(E)—>T(F) is an elliptic oper­
ator associated to the G-structure. Then ch D is the characteristic class of 
the G-structure corresponding to the universal class 

i 

(ch M - ch N) I I «T1 G H**(Bo; Q) 

where the cot- are the negative* weights of the real G-module V, ch M 
and ch N denote the characters of these complex G-modules and we use 
the Borel-Hirzebruch method [7] of describing the cohomology of the 
classifying space BQ. 

REMARK. This shows that ch D depends, in this case, only on 
E, F and not on the particular D. 

In (3.1)-(3.3) below we give examples of such operators. In all 
cases k = 1, i.e., D is of first order, and the ellipticity is easily verified. 

(3.1) RlEMANNIAN STRUCTURE. G = 5 0 ( 2 / ) , V=R21. 
Let A = 2JLo A P denote the complexification of the exterior algebra 

of V*. Let * be the usual dualizing transformation of A; thus 
*: A3*—»A2Z~P is an isomorphism and (*)2= (— l)p when applied to Ap. 
Let a: Ap->A2l~p be defined by a = ip(p+1)~l* so that a 2 = 1. Now take 
M(N) to be the + 1 ( — 1) eigenspace of the involution p of A in the two 
cases 

(i) p = (*)2, (ü) p = a% 

In each case we take D = d+Ô where, as usual, d denotes the exterior 
derivative of forms and ô is its formal adjoint. I t is easily verified 
that for any form <o 

pco = co => p(Du>) = — Deo, 

so that D: T(E)—>T(F) is defined. Theorems 1, 2 applied in these two 
cases give 

G) ]£?-o (-l)php = x[X]i where hp = dim Hp, Hp is the space of 
harmonic £-forms and x i s the Euler class of X; 

(ii) ti+-hl=0 if lis odd 
= L(J*0, the Hirzebruch L-genus [17], if / is even, 

where hl
+ = dim Hl

+, hl_ =d im Hi. and Hl = Hl
+ (BHL is the decompo­

sition into the eigenspaces of a. 
Case (i) is an elementary consequence of the Hodge theory and the 

5 The "negative" weights depend on some choices, but their product depends only 
on the orientation of V which is fixed. 
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Gauss-Bonnet formula. Case (ii) is the Hirzebruch index theorem [17, 
§8], since hl+ — hl_ is, for I even, easily seen to be the index (or signa­
ture) of the quadratic form in Hl given by the cup-product. 

REMARK. Operating on the space of all forms d + d is formally self-
adjoint and so has index zero. We get an interesting index therefore 
only by decomposing the space of forms and restricting the domain 
of d + d as above. The same remark applies to the next two examples. 

(3.2) HERMITIAN STRUCTURE. G= U(l) X U(m), V= Ch 

We start now with a complex manifold X of complex dimension /, 
and a holomorphic vector bundle W of dimension m, both with 
Hermitian metrics. Let A = ]CP-O ^P denote the exterior algebra of V 
and define the G-modules 

M = ( X A2M ® O , N = ( X) A2*+1j ® Cw. 

Since F==7* as G-modules we can interpret T(E), T(F) as spaces of 
forms of type (0, p) with coefficients in W. We take D = d+b where, 
as usual, d is the (0, 1) component of the exterior derivative and b 
is its formal adjoint. The index of D is now 

1 

y(D) = E (-1)*A0'*OF) 

where h°>p(W) =d im H°'P(W) and H0>*(W) denotes the space of har­
monic forms of type (0, p) with coefficients in W (relative to the 
Laplacian ôb+bô). But by the Dolbeault isomorphism [17, §15] we 
have 

H°>»(W) S H*>(X, W) 

where HP(X, W) denotes the ^-dimensional cohomology group of X 
with coefficients in the sheaf of germs of holomorphic sections of W. 
Applying Theorems 1, 2 we get the Hirzebruch-Riemann-Roch theo­
rem: 

THEOREM 3. For any compact complex manifold X and any holo­
morphic vector bundle W we have 

E ( - 1 ) * dim H*(X, W) = {ch0F)5(X)}[X], 

where 3(X) denotes the Todd class of the (complex) tangent bundle of X. 

This theorem was proved for projective algebraic manifolds by 
Hirzebruch [17] and, in a weaker form, by Kodaira [18] for Kahler 
surfaces. 
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(3.3) SPINOR STRUCTURE. G = Spin (2/), V=R21. 
We take M=S+, N=S~ to be the two half-spin representations. 

The Dirac operator D is a first order differential operator on spinor 
fields given, in terms of an orthonormal base {ei) of the tangent 
space, by 

i 

where di(s) is the covariant derivative in the ith direction and e* oper­
ates on spinors by Clifford multiplication (cf. [10, §10]). D inter­
changes positive and negative spinors. Let H(S) denote the space of 
all harmonic spinors (relative to the Laplacian D2), H(S) 
= H(S+)@H(S~) the decomposition into positive and negative 
spinors, and put 

h+(S) « dim H(S+), h~(S) = dim H(S~). 

Then, applying Theorems 1, 2 we get 

THEOREM 4. Let X be a manifold of even dimension with a spinor-
structure. Then 

h+(S) - hr(D) = A(X) 

where Â(X) is the Hirzebruch A-genus [7]. 

REMARKS. (1) The results of (3.1) and (3.3) can, like (3.2), be 
generalized to forms or spinors with coefficients in a vector bundle. 

(2) These results give an interesting analytical interpretation to 
the various "integrality theorems" for the L-genus, A -genus and Todd 
genus (cf. [7]). All these integers now appear as the indices of elliptic 
operators. For example, it was known that the .4-genus was an integer 
for Spin-manifolds, but not for general manifolds. Theorem 4 provides 
an explanation of this. 

(3.4) HOMOGENEOUS SPACES. Consider a homogeneous space 
X = H/G of a compact Lie group H, let M, N be G-modules and D 
any elliptic operator between the associated vector bundles which is 
invariant under the action of H. Then, by direct methods, using in­
duced representations, Bott [9] has shown that 

(i) if rank G < rank H, y(D)=0, 
(ii) if rank G = rank H (so that dim H/G is even) the formula for 

y(D) given by Theorems 1, 2 comes out of the Hermann Weyl char­
acter formula. 

(3.5) CASES OF ZERO INDEX. In some cases one can prove that 
chZ) = 0 and so, from Theorem 1, Y ( Z > ) = 0 . For example one can 
prove 
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PROPOSITION 1. Let dim X be odd and let D be an elliptic operator* 
such that, for ^GS(X)t 

depends only on 7r(£)G-X". Then ch D = 0. 

An elliptic differential operator always fulfills the condition above 
(since <r(D)(Ç) is then a homogeneous polynomial in £). Hence the 
index is zero in this case. 

PROPOSITION 2. Let dim X = w, D = T(E)—>T(F) an elliptic operator1 

where E and F are trivial bundles of dimension m. Then 
(i) (ch D)q = 0 for q>2m-n, 
(ii) (ch D) o = 0 if the Euler number of X is nonzero. 

From this, using Theorem 1, and the fact that Pontrjagin classes 
only occur in dimensions divisible by 4 we deduce that y(D) = 0 if 

(a) m<n/2 
or 

(b) m~n/2 and X has nonzero Euler number or n^O mod 4 
or 

(c) m <n and X has zero Pontrjagin classes in positive dimensions 
(e.g., X a hypersurface in jRn+1). 

The preceding cases of zero index include and generalize all the 
cases given in [2; 3; 14; IS; 20; 22]. 

4. The group of elliptic symbols. If £ , F are two vector bundles 
on X we have the set Diff(£, F) of all differential operators D: T(E) 
—>r(F). We can also consider the set Int(E, F) of all singular integral 
operators (cf. Seeley [19] and Dynin [14]), and we have a commuta­
tive diagram7 

Diff (E, F)> 

Int (E, F) ^Hom(7r*(£)77T*(F)). 

The bottom <r (which is surjective) is a symbol given by a Fourier 
transform and the vertical map X is that of Calderon-Zygmund [ l l ] . 
EUipticity and the index y are defined for integral operators as for 
differential operators and one has 

• Differential or integral (see §4). 
1 Horn denotes here the set of all continuous vector bundle homomorphisms. 
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y{D) = y(\(D)). 

Moreover the index depends only on the symbol, so that we can 
regard y as an integer-valued function on I so (7r*E, ir*F) (the set of 
all continuous vector bundle isomorphisms). Moreover, one can show 
that 

(i) y (a® a') = y(a)+y(<r'), 
(ii) y(<ra')=y(cr)+y((T'), 
(iii) y(<r)= 0 if <r extends to an isomorphism p*E—>p*F on B(X). 
Let us now define an equivalence relation on the set of all elliptic 

symbols by: cr~a' if there exist a* ( i = l , • • • , 4) which extend to 
B(X) such that 

<r' @ Oil = OL^CT @ «3 ) « 4 , 

and denote the set of equivalence classes by Ell(X). I t is an abelian 
semi-group under © and (i)-(iii) show that y induces a homomor-
phism 

y:Ell(X)->Z. 

The function /z defined by 

M(<r) = {ch(<r)3(X)}[X\ 

defines another homomorphism 

M : E l l ( X ) - + 0 

and Theorem 1 asserts that \x = y. The first main step in the proof is 
the determination of Ell(X): 

PROPOSITION 3. E11(X) is an abelian group and the tensor product 
makes it into a K(X)-module. If dim X is even, D0 denotes the operator 
of (3.1) (ii), and ao = €r(Do) then Ell(X)/K(X) a0 is a finite group. 

This is proved by first showing that8 E\l(X)^K(B(X)/S(X)), 
then applying the Chern character and observing that ch(<ro) is an 
invertible element of H*(X\ Q). 

REMARK. If X admits either a complex or spinor structure then the 
symbols of the operators of (3.2) (with W—\) or (3.3) actually gen­
erate Ell(X) freely as a K(X) -module. 

Proposition 3 reduces us to checking that y(Wa0) =ju(T7cro) for all 
vector bundles W on X. Here y(Wa0) may be computed as the index 
of Do "with coefficients in W." Thus, for fixed X, we have replaced 
the general elliptic operator by one of this standard type. Having 

8 K denotes the "reduced" group of K (cf. [5]). 
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thus normalized our operators we propose next to vary X. To exhibit 
the dependence on X we shall now write 

v(W<ro) = n(X, W), y(Wao) = y(X, W). 

5. Cobordism. If W=l the equality JU(X, 1 )=7(X, 1) is just the 
Hirzebruch index theorem (3.1) (ii). We shall therefore imitate 
Hirzebruch's proof [17, §8] in our more general case. First we intro­
duce the equivalence relation of cobordism on pairs (X, W) where X 
is a smooth compact oriented manifold of even dimension and W is a 
complex vector bundle on X: 

(Xu WÙ ~ (Z2, W2) 

if there exists a smooth compact oriented manifold Y with boundary 
dY=Xi<J( — X2) ( — X2 denotes X2 with the opposite orientation) 
and a complex vector bundle U on Y with U\Xi=Wi. The set of 
cobordism classes forms an abelian group, the addition being given 
by disjoint sums. We denote this group by A. Then the second main 
step in the proof of Theorem 1 is : 

PROPOSITION 4. If (X, W)~0 then fx(X, W) = 0and y(X, W) = 0. 

REMARKS. The vanishing of /x is elementary. In the case considered 
by Hirzebruch (W= 1) the vanishing of y follows from the topological 
interpretation of the index. In the general case, however, we have to 
give an analytical proof. The idea of the proof is as follows. Let 
dY=X and U\X=W. On Y the elliptic differential operator 
D = *d+d* operates9 on the vector bundle ^kA.u®W, Along the 
boundary X this vector bundle splits into E ® W and F® W of (3.1) 
(ii). Then 

Du = 0, « I XGF ® W , 

Du = 0, « I X G E ® W 

are well-posed boundary problems in the sense of [ l ] which give rise 
to a singular integral operator T on X (see [3]) such that 

(i) y(T) = 0, 

and 
(ii) <r(T) = W<TQ. 

Now, by generalizing the basic work of Thorn, one can determine 
the group A (cf. [12]). In fact for our purposes it is enough to deter­
mine A ® Q which is somewhat easier. To complete the proof of 

9 One has to use a connection in W so that d will operate on forms with coeffi­
cients in W. 
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Theorem 1, for dim X even, we therefore need only check that fx=y 
on the generators of A ®Q. In fact one can prove that both fx and y 
are multiplicative, i.e., that 

»(XU W1)-fi(X2, W2) - /*(*i X X2} Wi ® W2) 

and similarly for y. Using this one is finally reduced to checking the 
following : 

(i) the Hirzebruch index of P2n(C) (complex projective space) is 
equal to 1 ; 

(ii) the Euler number of S2n (the sphere) is 2. 
Alternatively we observe that the generators of A ® Q are all homo­
geneous bundles over homogeneous spaces so that one can use (3.4). 

By using the multiplicative property of the index the case of an 
odd-dimensional X can be reduced to that of the even-dimensional 
manifold XXSK 

6. Further remarks. (1) A more general definition of ellipticity 
than that used here has been given in [13]. I t is not difficult to form­
ulate this for vector bundles and show that Theorem 1 still holds. 

(2) Another generalization is to introduce elliptic complexes, i.e., 
sequences 

D D D 
E: 0 -> En -> £n_i -> • > E0 -> 0 

of differential operators (of the same order) with D2 = 0 and such 
that the sequence of symbols on S(X) is exact. Examples: D = d or 5. 
The index now gets replaced by the Euler characteristic of the co-
homology of the complex T(E). Theorem 1 extends to this case. 

(3) In view of Theorem 3 it is natural to hope that the Grothen-
dieck-Riemann-Roch theorem for proper maps of complex manifolds 
will come out of a suitable generalization of Theorem 1. 

(4) The problem of extending Theorem 1 to manifolds with bound­
ary presents some difficulties. However, using the results of [3] one 
can use Theorem 1 to compute the index of a large class of boundary 
problems. 
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