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S. M. Ulam, on page 33 of his book, 4 collection of mathematical
problems, poses the following question: Let G be a subgroup of S,
[the group of all permutations of the integers] with the property that
for every two sets of integers of the same power whose complements
are also of the same power, there exists a permutation g of G which
transforms one set into the other. Is G=S, (Chevalley, von Neu-
mann, et al.)?

The answer to this question is no!

We change the problem immaterially by taking S, to be the group
of all permutations of the natural numbers rather than the integers;
this is helpful since all infinite subsets of the natural numbers are
order-isomorphic. A subgroup G which is transitive (wherever pos-
sible) on the set of all subsets of the natural numbers is defined by
means of a finiteness condition.

Let N be the set of natural numbers with the usual ordering. Con-
sider the set G of all ¢& S, satisfying the condition:

(F) there exist Ay, A, ++ -, Ay, By, Bs, - - -, B; subsets of N
such that Uf_, 4,= N=U?_, B; and in addition, for all ¢, 0: 4;,—B; is
an order-isomorphism.

Call {(Al, Bi), (43, B), - + -, (A, Bi) } a class of order-pairs for .

Let g, T7&EG where {(Aly Bl)v R (Ak) Bk)} & {(Cly Dl)’ )
(Cypy DY) } are classes of order-pairs for ¢ & 7 respectively. It is easily
seen that

{@[B:NCl,7[B:NCD:i €L, - - R} &jE (L, -+, q}}

is a class of order-pairs for 7o, so that 76 EG. Also ¢ 1EG since
{(By, A1), (Bs, 43), - - =, (Bi, Ax)} is a class of order-pairs for o~
Consequently (since G is obviously nonempty) G is a subgroup of S..

That G has the property stated in the problem is clear since sub-
sets of N having the same power are order-isomorphic. The (at
most) two order-isomorphisms needed allow us to define an element
of G as required.

An element p of S, which reverses arbitrarily long strings of natu-
ral numbers cannot be in G. For example, p can be given by: p(m)
=(n+1)2—(m+1—n?) where n?<m < (n-+1)2 Suppose that p satis-

1 Research supported by N.S.F. Graduate Fellowship Number 22113 (1962-1963).
220




ON THE ISOMORPHISM PROBLEM FOR BERNOULLI SCHEMES 221

fies (F) with {(4y, By), - - -, (4s, Bk)} as a class of order-pairs. The
2k-+1 integers k2, - - -, k2+42Fk are reversed by p, but two of them
must fall in the same set 4. This is a contradiction.

Therefore G is a proper subgroup of S..
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1. DEerFINITION 1. A Bernoulli scheme (E, Q, &, P, T) is a probabil-
ity space together with a transformation T, where

(i) E= {1, cee, n} for some positive integer n, or E= {1, 2, - -},

() Q={w=(-"+, @, wo, w1, * + - )| w;EE for all i},

(ili) & is the smallest o-algebra containing all sets Af = {w|wi=*k},

(iv) ¢>0 is defined for kEE with D ez gz=1, P is the product
measure on & defined by P{4}} =g, for all 4,

(v) T is the shift transformation defined on 2, ie., Tw=w' if
and only if w/ =w; for all 4.

We shall sometimes refer to a Bernoulli scheme as a (g1, * * * , gn)-
scheme or a (qi, ¢ -+ -+ )-scheme depending upon whether
E={1, . co,n}orE={1,2,--- }

DEerINITION 2. Two Bernoulli schemes (E, @, §, P, T) and
(E', @, ¢, P, T") are said to be isomorphic modulo sets of measure
zero (or simply isomorphic) if there exist sets DEF, D' €F’ and a map-
ping ¢: D—D’ such that

(i) TD=D,

(ii) ¢: D—D' is one-to-one and onto,

(iii) ¢(Tw)=T'(¢w) for all wED,

(iv) if A CD then A€ if and only if ¢4 EF,

(v) if ACD and AEF then P(4)=P'(¢pA4),

(vi) P(D)=1.

DEFINITION 3. The entropy of a (g1, * - * , ga)-scheme [(q1, @2, + * *)-
scheme] is given by
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