EXAMPLE OF A PROPER SUBGROUP OF S_w WHICH HAS A SET-TRANSITIVITY PROPERTY¹

BY GERALD STOLLER

Communicated by A. M. Gleason, November 16, 1962

S. M. Ulam, on page 33 of his book, A collection of mathematical problems, poses the following question: Let G be a subgroup of S_{∞} [the group of all permutations of the integers] with the property that for every two sets of integers of the same power whose complements are also of the same power, there exists a permutation g of G which transforms one set into the other. Is $G = S_{\infty}$ (Chevalley, von Neumann, et al.)?

The answer to this question is no!

We change the problem immaterially by taking S_{∞} to be the group of all permutations of the natural numbers rather than the integers; this is helpful since all infinite subsets of the natural numbers are order-isomorphic. A subgroup G which is transitive (wherever possible) on the set of all subsets of the natural numbers is defined by means of a finiteness condition.

Let N be the set of natural numbers with the usual ordering. Consider the set G of all $\sigma \in S_{\infty}$ satisfying the condition:

(F) there exist $A_1, A_2, \dots, A_k, B_1, B_2, \dots, B_k$ subsets of N such that $\bigcup_{i=1}^k A_i = N = \bigcup_{i=1}^k B_i$ and in addition, for all $i, \sigma: A_i \rightarrow B_i$ is an order-isomorphism.

Call $\{(A_1, B_1), (A_2, B_2), \dots, (A_k, B_k)\}$ a class of order-pairs for σ . Let σ , $\tau \in G$ where $\{(A_1, B_1), \dots, (A_k, B_k)\}$ & $\{(C_1, D_1), \dots, (C_q, D_q)\}$ are classes of order-pairs for σ & τ respectively. It is easily seen that

$$\{(\sigma^{-1}[B_i \cap C_j], \tau[B_i \cap C_j]): i \in \{1, \dots, k\} \& j \in \{1, \dots, q\}\}$$

is a class of order-pairs for $\tau\sigma$, so that $\tau\sigma \in G$. Also $\sigma^{-1} \in G$ since $\{(B_1, A_1), (B_2, A_2), \cdots, (B_k, A_k)\}$ is a class of order-pairs for σ^{-1} . Consequently (since G is obviously nonempty) G is a subgroup of S_{∞} .

That G has the property stated in the problem is clear since subsets of N having the same power are order-isomorphic. The (at most) two order-isomorphisms needed allow us to define an element of G as required.

An element ρ of S_{∞} which reverses arbitrarily long strings of natural numbers cannot be in G. For example, ρ can be given by: $\rho(m) = (n+1)^2 - (m+1-n^2)$ where $n^2 \leq m < (n+1)^2$. Suppose that ρ satis-

¹ Research supported by N.S.F. Graduate Fellowship Number 22113 (1962–1963).

fies (F) with $\{(A_1, B_1), \dots, (A_k, B_k)\}$ as a class of order-pairs. The 2k+1 integers k^2, \dots, k^2+2k are reversed by ρ , but two of them must fall in the same set A_i . This is a contradiction.

Therefore G is a proper subgroup of S_{∞} .

HARVARD UNIVERSITY

ON THE ISOMORPHISM PROBLEM FOR BERNOULLI SCHEMES

BY J. R. BLUM¹ AND D. L. HANSON²
Communicated by J. L. Doob, November 27, 1962

- 1. Definition 1. A Bernoulli scheme $(E, \Omega, \mathfrak{F}, P, T)$ is a probability space together with a transformation T, where
 - (i) $E = \{1, \dots, n\}$ for some positive integer n, or $E = \{1, 2, \dots\}$,
 - (ii) $\Omega = \{ \omega = (\cdots, \omega_{-1}, \omega_0, \omega_1, \cdots) | \omega_i \in E \text{ for all } i \},$
 - (iii) \mathcal{F} is the smallest σ -algebra containing all sets $A_i^k = \{\omega | \omega_i = k\}$,
- (iv) $q_k > 0$ is defined for $k \in E$ with $\sum_{k \in E} q_k = 1$, P is the product measure on \mathcal{F} defined by $P\{A_i^k\} = q_k$ for all i,
- (v) T is the shift transformation defined on Ω , i.e., $T\omega = \omega'$ if and only if $\omega'_i = \omega_{i+1}$ for all i.

We shall sometimes refer to a Bernoulli scheme as a (q_1, \dots, q_n) -scheme or a (q_1, q_2, \dots) -scheme depending upon whether $E = \{1, \dots, n\}$ or $E = \{1, 2, \dots\}$.

DEFINITION 2. Two Bernoulli schemes $(E, \Omega, \mathfrak{F}, P, T)$ and $(E', \Omega', \mathfrak{F}', P', T')$ are said to be isomorphic modulo sets of measure zero (or simply isomorphic) if there exist sets $D \in \mathfrak{F}$, $D' \in \mathfrak{F}'$ and a mapping $\phi: D \rightarrow D'$ such that

- (i) TD = D,
- (ii) $\phi: D \rightarrow D'$ is one-to-one and onto,
- (iii) $\phi(T\omega) = T'(\phi\omega)$ for all $\omega \in D$,
- (iv) if $A \subset D$ then $A \in \mathfrak{F}$ if and only if $\phi A \in \mathfrak{F}'$,
- (v) if $A \subset D$ and $A \in \mathfrak{F}$ then $P(A) = P'(\phi A)$,
- (vi) P(D) = 1.

DEFINITION 3. The *entropy* of a (q_1, \dots, q_n) -scheme $[(q_1, q_2, \dots)$ -scheme] is given by

¹ Research supported by the National Science Foundation, Grant NSF G-21219.

² Research done under the auspices of the United States Atomic Energy Commission.