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It is the purpose of this note to set forth several new integral
representations of solutions of the heat equation
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which are positive for all x and for all negative or for all positive &.
These results are consequences of the author’s study of the Appell
transformation:

2) o(x, t) = k(x, Hulx/t, —1/1).
Here k(x, ¢) is the fundamental solution of (1),
k(w, t) = (4mt)~112% 14,

The transformation is known to carry a solution % of (1) into another
, and it serves in a remarkable way to set up a duality between vari-
ous classes of solutions. Proofs of the following results will appear
in the Transactions of the American Mathematical Society.

THEOREM 1. 4 necessary and sufficient condition that a function
u(x, t) should have the integral representation

® u(e,) = [ erroidaty)
for — o <t<0, with a(y) nondecreasing, is that u(x, t) should satisfy
(1) and be non-negative there.

An example of such a function is et cosh x, with a(y) a step-function.
This representation may be used to give an immediate proof of a
theorem of I. I. Hirschman [1] concerning solutions of (1) for <0
which turn out to be constant as a result of restricted growth prop-
erties, x— oo, t=t{.

THEOREM 2. A necessary and sufficient condition that a funciion
u(x, t) should have the representation
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u(e, ) = [ by + iz, ~Ds()dy

for — o <t<0, with ¢(y) positive definite, is that u(x, £) should satisfy
(1) and be non-negative there and in addition that

L)
f u(x, to)e"4tdy < oo

for some £, <0.

An example of such a function is k(ix, 1 —¢) with ¢(y) equal to the
positive definite function (4m)~2ev"/4,

THEOREM 3. 4 mecessary and sufficient condition that a function
u(x, t) should have the representation

@ o) = [ ooy

—00

for 0<t < o, with ¢(y) positive definite, is that u(x, t) should satisfy (1)
and be non-negative there and in addition that

(%) f °',u(ac, t)dx <

—o0
for some ,>0.
An example here is k(x, £) with ¢(y) equal to the constant (27)~%.
A positive solution of (1) which fails to have the representation (4) is
x242¢t. It does not satisfy (5) for any £,>0.
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