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Introduction. This work is closely connected with [5] and we shall
freely use the notations of [5, §2].

Let G be a semigroup which admits countable left invariant means
(i.e., MUG)NQIL(G) =&, where MI(G) is the set of left invariant
means) and let 9/(G) = {qS; oEm(G)*, Lip=¢ for gEG}. By Theo-
rem 4.2 of [5] G contains finite groups which are left ideals with left
cancellation, i.e. by [5, §2] (Li.l.c.).! Let { 4} «er be the set of all finite
groups which are (Lil.c.) in G and define for o, BEI, a-B=p. The
indices set I becomes thus a semigroup with semigroup algegra 5i(I)
and second conjugate algebra m(I)* (as defined in Day [3, p. 526]).
As proved in Theorem 1 of M. M. Day [3, p. 530] 9I(G) is also a sub-
algebra of m(G)* (when regarded as the second conjugate algebra
of Ii(G)).

A linear positive isometry from m(I)* onto 9I(G) which displays
the inner structure of 91(G) is constructed in this paper. This isometry
is also an algebraic isomorphism from the algebra m(I)* onto the
algebra 9I(G).

A=U,er A, is a right minimal ideal (this is the result of Clifford
[1,] for proof see [5, Lemma 3.1 and Remark 3.1]) and moreover, the
A,'s as finite groups are isomorphic to one another (see [6] end of
proof of Theorem E) therefore the number N of elements of 4, does
not depend on a. We now define the linear operator T': m(G)—m(I):

1
fra €1 (IN@ == 2 1.

g€EAq

This operator has the following properties:

(1) If f(g) =0 for each g in G then (Tf)(e«) =0 for each a&E I (obvi-
ous).

(2) T1g=1; (obvious).

(3) T({af)=T(f) for each @ in G and f in m(G):

1 1 1
(Tl (@) = = 2 @GN == 2 flag) =— 2 f(&) = (TH(e)
N gEAy N 9€EAs N gE€Aq
(ado=A.since A, 1is a finite (Li.l.c.))
1 A finite group BCG is a (l.ilc.) if gB=B for each g in G.
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(4) T is linear and || || £||f|| for f in m(G). Linearity is evident
and

1
2 f® < sup — 2 1]

gEA €] gEAy

1
| TA| = sup | (Tf)(@)| = sup—
el acl N

1
= — = |Ifl]-
& Z i =1l

(5) T[m(G)]=m(I) since if & is in m(I) then we define f in m(G)
as follows: for g& A, let f(g) =h(a) and this for each a &I, for g not
in A =U,er A, (if there exist at all such g’s) let f(g) =0. Obviously f
is in m(G) and:

1 1
(TH@) = — 2 f9) == 20 ha) = h(a).
N gEAy N gEAq
Thus Tf=", but moreover the above chosen f satisfies also ||f|| =||#|.
Thus the image of the closed unit ball in m(G) by T, is the whole
closed unit ball of m(I).

(6) If BCG is a finite set then (7'15) () does not vanish at most
on a finite subset of I. In fact (T15)(a)=(1/N) Z,,GA“ 15(g), thus
T'(1g) does not vanish only for those o which satisfy BMA4 .7 <. Since
B is finite there is at most a finite number of such a.

If Sis a set then let ¢o(S)*Cm(S)* be defined by

co(S)L = {¢; #(1,) = 0 for each g in S}
We are now ready to prove the following:

THEOREM. T*:m(I)*—>m(G)* is a linear positive isometry from
m(I)* onto 91(G) such that T*[QL(I)]=QL(G)N\IL(G) and

T*[Co([)l] = Co(G)J‘ N 9l(G).

ProorF. (T*¢p)f=¢(Tf) for ¢ in m(I)* and f in m(G). T* is linear
and moreover is isometric since:

I7*¢] = sup | (TN |= sup |(TN)]
rem(@),l7l st 7em(@, 7l st
=® sup |¢(m)]| = |4
rem(l) |Inll =1

(for (*) see (5) above). Now for ¢ in m(I)*, fin m(G) and ¢ in G
(T*¢) (luf) = ¢(Thf) = $(Tf) = (T*$)(f)

(see (3) above) which implies that T*(m(I)*) C9l(G). We prove now
that T*(m(I)*) =91(G). In order to do this we have to prove at first
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that if ¢ is in 9U(G) and f in m(G) is such that Tf=0 (ie., Tf(a)
=(1/N) X sea, f(g) =0 for each a€I) then ¢(f)=0. In fact if G—4
will denote those elements of G which are not in 4 =U,er 4. (this

may be an empty set) and if @ is some element of 4, then for any
f' of m(G) and g of G we have

(la(f'1e-a))(g) = (f'la-a)(ag) = f'(ag)le-a(ag) =0
since ag belongs to 4 for any g of G (see remark (3.1) of [5]). Thus:
o(f) = ¢(f'14) + ¢(f'la—s) = ¢(f'1a) + ¢(la(f'la-0)) = ¢(f'14).

Let us pick some «p of I and let ay, + + -, ax be the N elements of
A, If @ js an arbitrary but fixed element of 4 then ¢ &4, for some
a& 1. But 4,,-ais a left ideal and Aay-a CA4.. Since 4, is a minimal
left ideal (as a left ideal and group) A4,-a=4. Now

1 X 1 X 1
[— > la.-f](a) == 3 flaa) =~ T 10 = (.

N = i=1 g€Aq

But by assumption (7f)(e) =0 for each a1, which implies that

1 N
[;V— Zlaj:l(g) =0  foreach g of 4.

=1

But since ¢ is left invariant

1 N 1 N
o(f) = ¢[—- ElaJ] =¢ [(- Ew)u] =¢0) =0
N f==1 N t=1

which proves that if 7f=0 for some f of m(G) then ¢(f) =0 for each
¢ of 91(G).

Let now ¢, be an arbitrary but fixed element of 9I(G). We define
Yo of m(I)* such that T*Yo=¢, as follows: if % is in m(I) then let
fEm(G) be such that Tf=h (by (5) above there exists such an f).
We define Yo(h) =do(f). Yo is well defined on m(I), since if fi is such
that Tfi=h=Tf then T(fi—f)=0 and thus ¢o(fi—f)=0. We get
that ¢o(f1) =do(f) =v¥o(h).

Yo is linear since if h;=Tf;, 1=1, 2, then T(afr+8f2) =aTH+BTf.
and Yo(ah+Bhs) = po(afi+Bf2) = ado(f1) +Bdo(f2) = cbo(hr) +Bo(h2).

If % is in m(I) then we can choose by (5) above a f in m(G) such that
Il <4l and Tf=h. Thus |we(m)]=|eu(N] =led| 7]l llool ||
which implies that ¢, is in m(I)*. But for f in m(G) let h=TY, then
(T*o) (f) =vo(TS) =yo(h) =¢do(f) which proves that T*Po=¢,, in
other words that T* is a linear isometry from m(I)* onto 9I(G).

If now yEm(I)* is non-negative (i.e., ¥(h) 20 for £=0) and if
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fEm(G) is non-negative then by (1) above Tf is non-negative and
(T*)(f) =¢(Tf) 20 which proves that T* is positive.

If yEco(D)* (ie., ¥(1,) =0 for each &) and if BCG is a finite set
then (T*y) (15) =y(T'15) =0, since by (6) above T'(1g5) does not vanish
at most on a finite set. Thus T*Y is in ¢o(G)t and T*(co(I)*) Ceco(G)*+
NIIG).

If now, ¥ is in Ql(I) (H¢H = qer [1//(1,,)] < ) then we define ¢ in
Qi(G) as follows:

d(1,) =y (1) for g€4,, a&I and ¢(1,)=0 for gEG—A (if non-
void). Y (1.) #0 at most on a countable subset of I, therefore ¢(1,) #0
at most on a countable subset of G and

e =2 X [eld]| = Zlea)I = Nyl < w.

[ a€l gEdqy

Moreover,

(T (f) = WT) = 22 ¥1)(TNH(a) = Ema) — 2 fl®

acl acl aeAa
= WE —J-V-qb(la)f(g)
which implies that T*Y=(1/N)¢ and ¢EQL(G). Thus T*(QhL(I))
COLIGINGLG).

If $€co(G)TNMIL(G) then there is some Y Em(I)* such thatT*Y =4,
However as well known, co(I)* ®Qh(I)=m(I)* (see [7, p. 429]),
which implies thaty can be decomposed into ¢ =y +y. with Y1 € QL(I)
and yY:Eco(I)t. Thus TH=T*+T*:=¢. But from above,
T*YsEco(G)t and by assumption ¢pE&co(G)*, which implies that
TR Eco(G)*NQI(G) = {0}.

We have shown that T*(co(I)*) =co(G)*M3I(G). In the same way
one gets that T*(QL(I)) =QhL(G)M9I(G) which finishes the proof of
the theorem.

REMARKS. If ¢1, p2Em (1) * and xEm(I) then (¢1O¢s) (x) = Pi(dalix)
where [, is the left translation operator in m(I) with respect to the
element aE€I. (See M. M. Day [3, p. 527].) Since (ix)(8)=x(aB)
=x(B) one gets that (1 Od2) (x) =P1(P2(x)11) =h1(1r) - P2(x) and thus
$10¢2=0¢1(11)¢2, which implies that T*(d1O¢ps) =¢1(11) T*¢s. (Until
now O denoted multiplication in m(l)*. From now on its denotes
multiplication in m(G)*.) But (T*¢1) O (T*¢2) = ((T*¢1)(16)) T*p2
(see Day [3, p. 530]). Since (T*¢1)(1¢) =1(T16) =¢1(15) one gets
that T*(¢1 O¢s) = (T*d1) O (T*¢z) which implies the

COROLLARY. T* is an algebraic isomorphism from m(I)* onto 91(G).
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REMARKS. If ¢€9I(G) then let Yy =(T*)"1(¢). By Jordan’s decom-
position theorem Y =y1—y; with non-negative Y1, Y2 of m(I)* (see
[4, p. 98]). Thus ¢ = T*Y= T*y1— T*Y, where T*J;i=1, 2 are non-
negative disjoint left invariant elements in m(G)*. If a;=(T*¢;) (1)
=0 then it is easily seen that ¢ can be written as ¢ =a¢; — a2 where
¢1, ¢z are either left invariant means or zero. (¢;= (1/a;) T*Y; if a;>0

and ¢;=0 if a;=0.) For semigroups with cancellation, this is a result
of M. M. Day [2, p. 281].
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