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1. Symmetric invariants. Let F be a finite-dimensional vector 
space over JR. Each J £ V gives rise (by parallel translation) to a 
vector field on F which we consider as a differential operator d(X) on 
V. The mapping X—*d (X) extends to an isomorphism of the complex 
symmetric algebra S( V) over V onto the algebra of all differential 
operators on V with constant complex coefficients. Let G be a sub­
group of the general linear group GL{V). Let I(V) denote the set 
of G-invariants in S(V) and let I+(V) denote the set of G-invariants 
without constant term. The group G acts on the dual space V* of V by 

(*•**)(!» = v*{rl-v), geG,vev,v*e n 
and we can consider S(V*), J (F*) , J+(7*) . An element pGS(V*) (a 
polynomial function on V) is called G-harmonic if d(J)p = 0 for each 
/ £ / + ( V ) . Let H(V*) denote the set of G-harmonic polynomial func­
tions. 

Let Ve denote the complexification of V. Suppose B is a nonde-
generate symmetric bilinear form on Ve XVe. If X<EVC let X* de­
note the linear form F—>B(X, Y) on V. The mapping X—>X* extends 
to an isomorphism P—*P* of S(V) onto S(V*). If G leaves B invari­
ant then J ( IO* = I ( F * ) . 

We shall use the following notation: If E and F are linear sub-
spaces of the associative algebra A then E F denotes the set of all 
sums J^ioifi, (eiGEJiGF). 

THEOREM 1. Let B be a nondegenerate symmetric bilinear form on 
VXV and let G be a Lie subgroup of GL(V) leaving B invariant. Sup­
pose that either (1) G is compact and B positive definite or (2) G is 
connected and semisimple. Then 

s(v*) = i(y*)H(y*). 
The case of a compact G was noted independently by B. Kostant. 

I t is a simple consequence of the fact that under the standard strictly 
positive definite inner product on 5(F*) (invariant under G), the 
space H(V*) is the orthogonal complement to the ideal in S(V*) 
generated by I+(V*). For the noncompact case, let $ denote the com­
plexification of the Lie algebra of G. I t is not difficult to prove that 
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each compact real form u of g leaves invariant a real form W of Ve 

on which B is strictly positive definite. Now the compact case can be 
applied to the action of it on W. 

In the case when G is the orthogonal group 0(n) acting on F=JRn 

then 7(F*) consists of all polynomials in x\ + • • • +#» and H(V*) 
consists of all the ordinary harmonic polynomials. Theorem 1 reduces 
to the classical fact that each p~p(xi, • • • , xn) can be written 
ƒ>= X)* (*2+ • ' • +xl)khk where each hk is harmonic. I t is also known 
(compare Cartan [2, p. 285], Maass [9]) that H(V*) is in this case 
spanned by the polynomials (ai#i+ * • * +anxn)

k where #i, • • • , an 

£ C , a\ + • • • +a» = 0 and & = 0, 1, • • • . The following generaliza­
tion holds: 

THEOREM 2. Let the assumptions be as in Theorem 1. Let NG denote 
the set of common zeros {in Ve) of the elements in ƒ+( F*). Then H(V*) 
is the direct sum 

H(V*) = Hi(V*) + 22,(7*), 

where Hi(V*) is the vector space spanned by the polynomials (X*)k, 
(fe = 0, 1, 2, • • • , XÇLNQ) and Hi(V*) is the set of G-harmonic poly­
nomials which vanish identically on NG. 

For the case G = 0(n) it follows easily from Hubert 's Nullstellen-
satz t h a t # 2 ( F * ) = 0 . 

2. Exterior invariants. Let A(F) and A(F*), respectively, denote 
the Grassmann algebras over the dual vector spaces V and F*. Each 
X £ V induces an antiderivation 8(X) of A(F*) given by 

*(*)•(*! A • • - A * » ) = Il(-l)k+1Xk(X)(x1A • • - A A A • • - A O 
J b - 1 

where #& indicates omission of Xk. The mapping X—>8(X) extends 
uniquely to an isomorphism of A(F) into the algebra of all endomor-
phisms of A(F*). Let G be any subgroup of GL(V). Let J(V) and 
J(V*) denote the set of G-invariants in A(F) and A(F*), respectively, 
J+(V) and J+(F*) the sets of invariants without constant term. An 
element p£A( F*) is called G-primitive if 5( / )£ = 0 for each /<£ /+( F). 
Let P (F*) denote the set of G-primitive elements. 

THEOREM 3. Let the assumptions be as in Theorem 1. Then 

A(F*) = J(V*) AP(V*). 

EXAMPLE. Let E be an w-dimensional Hilbert space over C. Con­
sidering £ as a 2w-dimensional vector space V over R the unitary 
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group U(n) becomes a subgroup G of the orthogonal group 0(2n) . 
Let Zk = Xk+iYk ( lgj&^tt) be an orthonormal basis of E and let 
xi, yij ' • • , %n> Jn be the basis of V* dual to the basis X\, Y\, • • • , 
Xn, Yn of V. I t is easy to show that the element 

n / i n 

u = J2xk Ayjc ( =— ]£ ** A & 
1 \ 2 1 

and its powers form a basis of J+(V*). In view of Theorem 3 each 
fl£A(F*) can therefore be written 

t> = 52 «* A #b, 

where each ƒ>*, satisfies o(w)£fc = 0, (compare Weil [10, Théorème 3, 
p. 26]). 

3. Invariants of Weyl groups. Let u be an arbitrary semisimple Lie 
algebra over R whose adjoint group U is compact. Let 6 be an arbi­
trary involutive automorphism of u and let u = ï + p be the decomposi­
tion of u into eigenspaces of 0 for the eigenvalue + 1 and — 1 respec­
tively. Let K denote the analytic subgroup of U corresponding to Ï. 
Let I)p be a maximal abelian subspace of p and extend ïfo to a maximal 
abelian subalgebra Ï) of u. The Weyl group of I) is defined as the 
group of linear transformations of Ï) induced by the set of elements 
in U which leave Ï) invariant ; the Weyl group of fy> is defined as the 
group of linear transformations of \)p induced by the set of elements 
in K which leave % invariant. Let these groups be denoted by 
WÇt)) and W(fy) and let /({)*) and I(t)*) denote the corresponding 
sets of invariant polynomial functions. I t is known that W(fyp) can 
be described as the group of linear transformations of t)p induced by 
those members of WÇfj) which leave ffo invariant. Consequently, if 
the restriction to ^ of a function ƒ on t) is denoted by ƒ, the mapping 
ƒ-*ƒ maps I(ï)*) into I(tf). 

THEOREM 4. (i) Suppose u is a classical compact simple Lie algebra 
and 9 any involutive automorphism of u. Then the restriction mapping 
f->] maps 7(1)*) onto ICtf). 

(ii) Part (i) does not hold in general for the exceptional simple Lie 
algebras u = Ce, C7, Cs. 

(iii) Let Q(ï)*) and Q(I)p*), respectively, denote the set of invariant 
rational functions on t) and ï)p. Under the restriction mapping ƒ—>ƒ, 
Ç(ï)*) is mapped onto (?(ï)p*). 

REMARKS. AS U and 0 are arbitrary, t+ip is the most general semi-
simple Lie algebra over R. Parts (i) and (ii) above therefore express 
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a property which is shared by all classical simple Lie algebras over R, 
yet fails to hold for all simple Lie algebras over R. Part (i) is proved 
by verification using Cartan's classification [ l ] of the root structures 
of U and of the symmetric space U/K. Since the groups W(%) and 
W(tj) are finite groups generated by reflections, IÇt)*) and 2(ï)*) are 
polynomial rings, (Chevalley [4]). The degrees of the generators can 
be readily determined from known facts. I t is then found that if the 
space U/K is ft/F4> E7/(E*XT) or E8/(E7XSU(2)), the ring ƒ($>*) 
contains a homogeneous element of degree 3, 4, and 6, respectively, 
which cannot be obtained from !({)*) by restriction. Part (iii) had 
been proved independently by Harish-Chandra. 

4. Fundamental functions on quadrics. Let G be a topological 
group, H a closed subgroup, G/H the set of left cosets gH with the 
natural topology. If ƒ is a complex-valued continuous function on 
G/H and x(~G then fx denotes the function on G/H given by fx(gH) 
=f(xgH) (g(EG). The function ƒ is called fundamental (Cartan [3, 
p. 218]) if the vector space Vf over C spanned by the functions 
fx (x£G) is finite-dimensional. 

Consider the quadric Cp,qC.Rp^q given by the equation 

Q(X) ss x\ + • • • + xp - 4 + i — • • • — xl+q = 1 , (p è 1, q è 0). 

Let 0(p, q) denote the group of linear transformations of Rp+Q leav­
ing Q invariant. The group 0(p, q) acts transitively on Cp,q and the 
subgroup leaving (1, 0, • • • , 0) fixed is isomorphic to 0{p — \, q) 
so we make the identification 

(1) CPtQ = 0(p, q)/0(p - 1, q). 

I t is obvious that if P = P(xi, • • • , xp+q) is a polynomial then the 
restriction of P to Cp,q is a fundamental function. On the other hand 
we have 

THEOREM 5. Let f be a fundamental function on Cp,q, Assume 
(p, 5)5^(1, 1). Then there exists a polynomial JP = P(#i, • • • , xp+q) 
such that 

f = P on CPtq. 

REMARKS. 1. The special case q = 0 (for which 0(p, q) is compact) 
was already proved by Hecke [6] and Cartan [3]. 

2. If p=ly the denominator in (1) is compact and by use of a 
compact real form of the complexification of the Lie algebra of 
0 ( 1 , q) this case can be reduced to the case 1. This procedure fails 
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for g = l because 0 ( 1 , 1) is not semisimple and the theorem fails to 
hold for (p, g) = ( l , 1) as the example/(#i, x2) — cosh-^dxij ) shows. 
The case (p, q) = (1, 2) was settled by Loewner [8] using special fea­
tures of the Lobatchefsky plane. 

3. By a method of descent the remaining cases can be reduced to 
the case x\+xl--x|=l (which differs radically from the case #? — x% 
— xl= 1 by the noncompactness of the isotropy group). Here one can 
make use of the special property of the identity component of the 
group 0(2 , 1), namely that every representation of it extends to a 
representation of the corresponding complex subgroup of GL(3, C), 
(see Harish-Chandra [5]). 

4. From Theorem 1 it is clear that the polynomial P can be taken 
to be an 0(p, q)-harmonic polynomial, that is a polynomial satisfy­
ing the equation 

/ d2 d2 d2 d2 \ 
I—i+ 1_ . . . )P = 0. 
\dxi dx£ dxp

2+i dx$+q/ 

I t follows that the function ƒ is necessarily a sum of eigenfunctions 
of the Laplace-Beltrami operator on Cp,q (formed by means of the 
indefinite Riemannian metric on Cp,q, [7]). 
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