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Let X be a compact set in the z-plane. We are interested in two 
function spaces associated with X: 

C(X) — space of all continuous complex-valued functions on X. 
P(X) =space of all uniform limits of polynomials on X. 

Thus a function ƒ on X lies in P{X) if there exists a sequence {Pn} 
of polynomials converging to ƒ uniformly on X. 

Clearly P(X) is part of C(X). 
QUESTION I. When is P(X) = C(X)t i.e. every continuous function 

approximable by polynomials? 
QUESTION I I . If P ( X ) ^ C ( X ) , how can we characterize those 

functions on X which lie in P(X)? 
The first man to pay any attention to these problems I believe 

was Weierstrass who in 1885 showed P(X) = C(X) when X is the 
unit interval on the real axis. If instead of the unit interval we con­
sider an arbitrary Jordan arc (homeomorph of the unit interval), the 
problem is much harder. Walsh [ l ] proved 

THEOREM. For every Jordan arc J in the plane, P(J) = C(J). 

Instead of a Jordan arc, consider now a simple closed Jordan curve 
T. I t is easy to see that now P(T) ?£C(F). The reason is this: suppose 
ƒ is in P(T). Then there is a sequence {Pn} of polynomials tending 
to ƒ uniformly on T. Hence |PW — Pm\ tends to 0 uniformly on T. If z 
lies inside T, 

| Pn(z) - Pm{z) | è max I Pn - Pm\ , 
r 

by the maximum principle. Hence Pn — Pm approaches 0 uniformly 
on W, the interior of F, whence Pn tends to a limit uniformly on W\ 
call it P. Clearly F is analytic on W and has ƒ as boundary values on 
T. Thus we have: 

If ƒ is in P(T) , then ƒ is the boundary function of an analytic func­
tion. This rules out many ƒ's in C(r) , e.g. any real-valued noncon-
stant ƒ. This raises the question: Does P(T) consist of all ƒ in C(r) 
which are boundary function of functions analytic in W? Walsh [2] 
in 1926 showed 
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THEOREM. P(T) consists of exactly those ƒ in C(T) which admit an 
analytic continuation to the inside. 

The preceding statement about arcs is a corollary. Consider now 
an arbitrary compact plane set X. What properties of X are necessary 
in order that we can have PCX) = C(X)? 

(1) X has no interior (for each ƒ in PCX) is analytic at interior 
points). 

(2) The complement of X is connected (for otherwise the comple­
ment has a bounded component, and then the same reasoning we just 
gave for a closed curve shows PCX) 7^C(X)). 

In 1934 Lavrent'ev proved in [3] 

THEOREM. (1) and (2) are necessary and sufficient for P{X) = C(X). 

This settles Question I. What happens if we allow interior? Clearly, 
P(X) contains only functions analytic on the interior of X. In 1951 
Mergelyan [4] showed 

THEOREM. If X has connected complement, P{X) consists of all f in 
C(X) which are analytic on the interior of X. 

Mergelyan's result has all the other theorems as special cases. I t 
settles Question II , essentially. After this result, it was natural that 
men should turn their eyes toward space, the space of n complex 
variables, Cn. 

Let X be a compact subset of Cn and define P(X) and C(X) as 
before, only now with "polynomial" meaning polynomial in 
2i, • • • , Zn, rather than in z. Again we ask Questions I and II for 
these new sets and our hope is to find some analogue of Mergelyan's 
theorem for Cn. This goal is up to now very far from having been 
reached. However, a number of interesting things have been found 
out in the last 10 years and a few of these I want to discuss. 

PCX) has two structures: it is an algebra over the complex numbers 
under pointwise addition and multiplication of functions, and it is a 
Banach space under the norm |(/|| =maxx | / | . Since \\f'g\\ û\\f\\ '\\g\\9 

P(X) is thus a Banach algebra, and it is clearly commutative, has a 
unit, and is semi-simple. An important object attached to a com­
mutative Banach algebra is its space of maximal ideals. How can we 
identify that space for an algebra P(X)J The general theory of 
Banach algebras sets up a one-to-one correspondence between max­
imal ideals M and linear functionals m (m^O) on the algebra which 
are multiplicative (m(xy) = m(x)m(y)), such that M is the kernel of 
m. Also m has norm 1 as linear functional. 
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Let nthe a, multiplicative linear functional on P{X). The coordinate 
functions zi, • • • , zn generate P{X) as Banach algebra, so m is 
determined by the w-tuple of numbers {tn{zi), • • • , m(zn)). This »-
tuple is a certain point <j>{m) in Cw. This point has the property 

| P{<t>(m)) | ^ max | P | > fr>r all polynomials P . 
x 

This is true because P{<f>{ni))=ni{P{zi, • • • , sw)) since m is linear 
and multiplicative, and ||m]| = l. 

DEFINITION. The hull of X is the set h{X) of all points x0 in O 
such that for all polynomials P we have | P{xo) | ^ m a x i | P | . 

The map <£ just defined attaches to each multiplicative linear func­
tional m on P{X) a point of the hull of X. I t is easy to see that </> is 
one-one and onto so that we can identify the maximal ideal space 
(space of m's) with the hull. 

For X in the complex plane, h{X) is very easy to describe: it is the 
union of X and its bounded complementary components, i.e. it is 
obtained by filling in the holes in X. As an example in C2, consider 
the set X of all (3, w), | z\ = 1, | w\ = 1. Thus X is a torus. Here h(X) 
is the closed bicyUnder |g| 5^1, \w\ ^ 1 . Already this example shows 
that "filling in holes" is much subtler in C2 than in the plane. 

For an arbitrary compact X in Cn it is clear from the definition 
that h{X) is compact and contains X. What else can we say about it? 
By a Weil polyhedron in Cn we mean a set W where 

W = {xinCn\ J P * 0 ) | < 1, i - 1, • • • , * } , 

the Pi being polynomials. A. Weil proved in the Thirties that if F 
is any analytic function on such a set Wy then F is uniformly ap­
prox imate on compact subsets of W by polynomials. Silov [5] 
showed : 

THEOREM. Let X be a compact set in Cn and F a function defined and 
analytic in some neighborhood of h{X). Then F {restricted to X) is in 
P(X). 

To prove this, we observe that if x0 is not in h{X), then by defini­
tion of hull there exists a polynomial Q with J Q{x0) \ = 1, | Q\ < 1 on 
h{X). From this one easily gets the existence of a Weil polyhedron 
containing h{X) inside every neighborhood of h{X), in particular in­
side the neighborhood where F is given. Applying Weil's result, we 
get that P i s i n P ( X ) . 

COROLLARY (SILOV [5]). If X is connected, then h{X) is connected. 

Further topological information on hulls was recently given by 
A. Browder [6], who makes use of a result of Serre [7]. 
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THEOREM (BROWDER). If X is a compact set in Cn, then the jth Cech 
cohomology group of h(X) with complex coefficients, Hj{h{X), C), van­
ishes for j^n. 

Let us call a set X "polynomially convex" if it coincides with its 
hull, i.e. h(X) —X. The last theorem has the interesting consequence 
that if X is topologically a 2-sphere (or any compact orientable 2 
manifold) in C2, then X cannot be polynomially convex, for then the 
second cohomology group of X would be 0. Of course the analogous 
statement holds for other Cn. 

A simple sufficient condition for polynomial convexity is 

THEOREM. If P(X) = C(X), then X is polynomially convex. 

The reason for this is that h(X) is the maximal ideal space of P(X) 
as we saw earlier, and the maximal ideal space of C(X) is easily seen 
to be X itself. As a consequence we have: 

COROLLARY. If X lies in the real subspace of Cn, i.e. the subspace of 
points all of whose coordinates are real, then X is polynomially convex. 

For P{X) is here generated by functions real on X, and so the 
Stone-Weierstrass theorem yields P(X) = C(X). This Corollary 
shows that the lower dimensional cohomology groups (j<n) of a 
polynomially convex set are highly arbitrary. 

I next want to discuss what happens to Walsh's theorems about 
curves and arcs when these lie in O , n> 1. 

Let r be a simple closed curve in Cn
in>\. I t is quite possible that 

T is polynomially convex, e.g. if Y lies in the real subspace. On the 
other hand, assume that V lies on an analytic variety 2 of complex 
dimension 1 and that T bounds a compact piece of 2 . By the maxi­
mum principle on S, then, that compact piece will lie in h(Y). In the 
converse direction one can say the following, proved by the author in 
[8]: Call T an analytic curve if it can be represented in the form 
Zi. — (l>i(t)y i=l, - - - , n, where / ranges over the circle \t\ = 1 , where 
the 4>i are analytic on 11\ = 1 and <£ƒ (t) ?^0 on 11\ = 1. 

THEOREM. Let Y be an analytic curve in Cn which is not polynomially 
convex. Then Y lies on an analytic variety of complex dimension 1 and 
bounds on this variety a compact piece. That compact piece is then the 
hull of T. 

Let next J be a Jordan arc in Cn. Call it "analytic" if it can be 
parametrized Zi — <t>i(t), O ^ ^ g l , with the <£; analytic on [0,1] and 
4>l 5^0. In [8] we showed that , as one would expect: 
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THEOREM. Every analytic arc in Cn is polynomially convex, and more­
over P ( J) = C'(J). 

Both these theorems become false for arbitrary Jordan curves and 
arcs in O . Thus there exists a simple closed curve whose hull has 
(real) dimension ^ 4 . Also the author [9] and Rudin [lO] constructed 
Jordan arcs, in C3 and C2 respectively, which are not polynomially 
convex. The construction in C3 proceeds by exhibiting a 2 sphere in 
Cz containing an arc such that the sphere minus the arc is an analytic 
variety. If P is any polynomial, \P\ takes its maximum somewhere 
on the sphere. By the maximum principle for analytic varieties, it 
must take it on the arc. Hence the hull of the arc contains the sphere. 
On the other hand, the hypothesis of analyticity can be considerably 
weakened. (See Bishop [ l l ] ) . The following interesting and appar­
ently difficult questions are open: 

If J is a differentiable arc in Cn, must P(J) — C(J)?2 

If J is a Jordan arc in Cn which is polynomially convex, must P(J) 
= C(J)7 

As a partial generalization of Walsh's theorem on simple closed 
curves, one has the following theorem: 

THEOREM. Let V be an analytic simple closed curve in Cn which lies 
on a l-complex-dimensional variety S and bounds on S a nonsingular 
compact piece S0. Then P(T) consists of exactly those ƒ in C(T) which 
admit analytic extensions to S0 — T. 

This is seen by combining results of the author in [8] and of Bishop 
[l2J. Various related results on algebras of analytic functions on 
Riemann surfaces are given in Bishop [ l l ; 12] and Rossi [13]. 

We now leave curves and arcs and consider again a general com­
pact set X. The functions in P(X) admit a certain natural extension 
from X to all of h(X). To see this, let ƒ belong to P(X) and let {Pn} 
be a sequence of polynomials tending to ƒ on X. I t then follows at 
once from the definition of h(X) that {Pn\ converges uniformly on 
h(X) to a continuous limit function ƒ, and that ƒ depends only on ƒ, 
and so provides the asserted extension of ƒ to h{X). (The map: ƒ—>ƒ 
is in fact the Gelfand representation of PÇK) by continuous functions 
on its maximal ideal space.) 

If h(X) —X is an open set in Cn, as is for instance the case when X 
is a simple closed curve in the plane, then each ƒ is clearly an analytic 

2 Added in proof. Answered affirmatively by Bishop, as a consequence of results 
in [11]. 
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function on h(X)—X. Is it true in the general case that the ƒ have 
certain properties of analyticity on h(X) —X? 

In this direction Rossi [14] has proved the following generalization 
of the local form of the classical Maximum Principle: 

THEOREM. Let X be any compact set in O . Let x0 be a point in h(X) 
— Xf Va neighborhood of xo in h{X) — X and dV the boundary of V 
in h(X). Then if f is any element of P(X), we have 

| / (*o) | ^ max | / | . 
dV 

The proof makes use of the result of Weil mentioned earlier and of 
the solution of the so-called Cousin Problem (existence of meromor-
phic functions with prescribed zeros and poles) for certain regions. 

The question had been raised whether perhaps for every X, 
h{X) —X contains pieces of analytic varieties. This has unfortunately 
been answered in the negative, by Stolzenberg in [19]. The question: 
for what geometrical reason does a given point outside a set X lies in 
the hull of that set? has not been answered in a satisfactory way, and 
remains a tantalizing problem. 

Let us finally return to the z-plane and consider another function 
space associated with a compact plane set X: 

R(X)= space of uniform limits on X of rational functions which 
are analytic on X. 

The holes in the set X play a quite different role for R(X) than for 
P(X). For if Zo lies in such a hole, (z — Zo)"1 belongs to R(X), and so 
functions in R(X) need not be analytic in the hole. As before, the 
condition: "X has no interior" is necessary for R(X) = C(X). I t is 
however not sufficient, as the following example, given by Mergelyan 
in [16], shows: Let She the compact set obtained by removing from 
the closed unit disk D an infinite family of disjoint open disks Di in 
such a way that the sum of the lengths of the boundaries of the Di 
converges, while S — D — U* D» has no interior points. The set S is 
known as a Swiss Cheese, for obvious reasons. On C(S) one can now 
define the following bounded linear functional L, where 7,- denotes 
the boundary of Di'. 

Uf) = f f(z)dz + È f f(*)dz, 

integrating in the positive direction over \z\ = 1 and in the negative 
direction over the 7». I t now follows by Cauchy's theorem that if g is 
any rational function whose poles lie in the complement of 5, then 
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L(g) = 0. Hence L annihilates R(S). Clearly also L does not annihilate 
C(S), and so R(S)7é-C(S) although 5 is without interior. 

Bishop and Hoffman have shown that one can map the set S 
homeomorphically on a set S' in C2 in such a way that the function 
space R(S) goes over into the function space P(S'). Thus approxima­
tion by rational functions in one variable is here equivalent to poly­
nomial approximation in two variables. A general result of this type 
is given by Rossi [lS]. Swiss Cheese sets are the basis of numerous 
counterexamples in approximation theory; in particular, the above-
mentioned counterexample of Stolzenberg rests on such a set. 

One answer to the question: when does R(X) equal C(X)1 is given 
in the following result of Bishop [17]: 

THEOREM. Let X be a compact plane set. The condition: 
(*) For each x0 in X, there exists f in R{X) with |/(xo) | > \f(y) \ for 

all y in X — XQ, 

is necessary and sufficient for R(X) = C(X). 

Various geometric conditions on a set X are known assuring that 
R(X)~C(X). For such results see Mergelyan [ lô] . A simple condi­
tion given in 1931 by Hartogs and Rosenthal [18] is the following: 

THEOREM. If X has vanishing plane Lebesgue measure, then R(X) 
= C(X). 

A necessary and sufficient geometric condition on X does not seem 
to be known at the present. 
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RESEARCH PROBLEM 

33. E. W. Cheney and P. C. Curtis, Jr., Convex bodies. 

Let M denote a linear manifold (i.e. translate of a linear subspace) 
in ^-dimensional real space. For each real p > 1 there is a unique point 
Xp^iipi, • * • , £pn) on M for which the norm (Yl-i \%PJ\P)1,P is a 
minimum. Prove or disprove the conjecture that limp->oo xp exists in 
all cases. The conjecture has been established by simple arguments 
when n^3, when M has dimension 1 o r w - 1 , and when there exists 
a unique point x0=(£oi, • • • , êon) on M for which max; |£0y| is a 
minimum. (Received January 20, 1962.) 


