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tion is assumed with respect to #. The space would not be an Orlicz 
space, but an extension of the Lp space for p<l. For the latter Lp 

spaces, it is known that the isometries are as described above. 
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We give a very short proof of the recurrence theorem of Chung and 
Fuchs [ l ] in one and two dimensions. This new elementary proof 
does not detract from the old one which uses a systematic method 
based on the characteristic function and yields a satisfactory general 
criterion. But the present method, besides its brevity, also throws 
light on the combinatorial structure of the problem. 

Let N denote the set of positive integers, M that of positive real 
numbers. Let {Xn, n £ N } be a sequence of independent, identically 
distributed real-valued random vectors, and let Sn— ^2^iXv. The 
value x is possible iff for every €>0 there exists an n such that 
P { | 5 W — x\ < e } > 0 ; it is recurrent iff for every €>0 , P { | S n — x\ <e 
for infinitely many n\ = 1 . I t is shown in [ l ] that every possible 
value is recurrent if and only if for some ra£M we have 

(1) î > { | S n | <m\ = oo. 
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Note: In two dimensions \x\ = m a x ( | x i | , |x 2 | ) if x = (xi, #2). We 
are here concerned with obtaining sufficient conditions for the valid­
ity of (1). We state our results in two analogous propositions which 
correspond to one and two dimensions respectively. 

PROPOSITION 1. Let {un(m): wGN, m&H] satisfy the following con-
ditions: 

(i) for each n, un(m) is nonnegative, nondecr easing in m and 
\\mm^un(m)^\\ 

(ii) there exists a c>0 such that for every positive integer m, 

00 00 

2 Un(m) ^ cm^ un(i) 

(if the left member is infinite^ the inequality is taken to mean that the 
right member must also be infinite) ; 

(iii) for each €>0 , 

lim un(en) = 1. 
n-K» 

Then we have 

00 

(2) ! > » ( ! ) = oo. 
n=»l 

PROOF. Let 6 £ N . We have by (i) and (ii), for integral m, 

oo 1 oo 1 bm 1 bm 

]C ^n(l) è X) un(m) ^ X) un(rn) ^ — £ ) un 

n»i cm n«i cm w-i cm w«i 

Hence we have by (iii) 

oo 1 bm h 

]C ^n(l) è Hm inf ]T) 1 = —, 
n=l m-»«o CM n=*l C 

from which (1) follows since b is arbitrary, q.e.d. 
REMARK. I t is easy to see from the above proof that condition (iii) 

can be weakened, for example, to the following: 
(iii*) there exists a S > 0 such that for every e > 0 

1 n 

lim inf — ]T) uv(ev) ^ 8. 
n->» n v«l 

PROPOSITION 2. LeJ jwn(m):wGN, ra£M} satisfy the condition (i) 

7> 
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(ii2) there exists a c>0 such that for every positive integer m 

00 00 

X Mn(m) S cm2 X) *»(!) Î 
n«=l n*»l 

(iii2) tóer# exist a>0 and d>0 such that 

dm 
un(m) ^ for am2 ^ n. 

n112 

Then we have (2) again. 

PROOF. We have for a<a', 

* 1 _ dm —̂  1 
Z) ^n(l) è —; Z) *»G») à —- 2-, -TT! 
n - 1 CW2 am*zn*a'm2 Cm2 am2énéa>m2 ft1'2 

è — ((01 / 2 - a1'2) 

for all sufficiently large m. Since a' is arbitrary, (2) follows, q.e.d. 

APPLICATIONS. Take 

Unim) = P{ I 5„ | < m}. 

Condition (i) is trivially satisfied. Condition (ii) with c = 2 or condi­
tion (ii2) with c = 4 is satisfied according as the Xw 's are one-dimen­
sional or two-dimensional. This known observation in renewal theory 
follows a t once from the interpretation of X » - i w « W a s the ex~ 
pected number of entrances into the interval ( — mym) by the random 
sequence {Sn, ^ G N } . Condition (iii) is the usual normalized form of 
the weak law of large numbers if E(Xn) = 0, while condition (iii2) is 
implied by the normalized form of the central limit theorem if E(Xn) 
= 0 and E(\Xn\*)<*>. Note however that here we may use the 
validity of these classical limit theorems as our conditions. 

Let us point out that in Theorem 4a of [ l ] the conditions are pre­
cisely those for the validity of the weak law of large numbers in the 
form (iii) ; in Theorem 5 there, the conditions of zero mean and finite 
variance do imply the central limit theorem in the required form. 
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