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In the year 1908, J. Plemelj [8] published an ingenious solution of 
the very difficult Hubert problem for systems of analytic functions. 
His proof, which utilizes the theory of Fredholm integral equations, 
may also be found in the appendix of Muskhelishvili's monograph on 
singular integral equations [7]. Since Plemelj's solution of this im­
portant problem is of a fairly complicated nature, we feel that, in 
the light of recent advances in the theory of elliptic partial differen­
tial equations [ l ; 3; 9; 10] and linear analysis [4; 5] , it is worthwhile 
to present a new proof which, while it is perhaps technically compli­
cated, is conceptually much simpler than that given by Plemelj. Our 
approach, which is based on a continuity method, will be outlined in 
this note. We shall in fact discuss a general class of transmission 
problems, which includes the Hubert problem mentioned above. De­
tailed proofs will be presented in another publication. 

1. Statement of the problem. We shall pattern our formulation of 
the problem after that proposed in a preceding paper [ó]. Accord­
ingly, we denote by R a given closed Riemann surface of genus h, and 
by L, a system Li, L2, • • • , LN, of simple, closed, disjoint, oriented 
regular curves with continuously turning tangents. Suppose tha t 
T+(s) and T~(s) are given 2nXn matrix functions on L, whose entries 
are functions of class C1, such that 

(1.1) det(r+, T-) ^0 

for all points on L. Let Fdz be a given square integrable » X 1 con­
jugate matrix differential on R (i.e., Fdz is to be invariant under con-
formal transformations). Denoting left and right boundary values 
o n i o f a n w X l matrix function Won R — L by W+ and W~ respec­
tively, we state our problem as follows: 

Find all strong solutions of the transmission problem 

(1.2) W, = F, 

(1.3) Re T+W+ = Re T~W-. 

The concept of "strong solution" is defined, for example, in [ l0] , 
and will become clear from the discussion below. 

1 This research was supported by the National Science Foundation under grant 
No. NSF—G14445. 
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2. The adjoint problem. In order to formulate an appropriate 
adjoint problem, we set 

(2.1) T = (T+, T~). 

According to the hypothesis (1.1), T is a nonsingular, 2nX2n matrix 
function. We then form T"1 and define two nX2n matrix functions 
5 + and 5~" through the relation 

(2.2) T~l 

< ) • 

The homogeneous adjoint problem will now consist of finding nXl 
matrix differentials Vdz (i.e., Vdz is to be invariant under conformai 
transformations), which are strong solutions of the problem 

dz dz 
(2.3) VM = 0, Re S+,V+ — = Re S-'V~ — > 

ds ds 
where, as usual, the matrices S±f are obtained from the matrices S± 

by the transposition of columns and rows. 

3. Coercive inequalities. In order to state the coercive inequalities 
needed, we shall introduce certain norms. In the subsequent discus­
sion, a function will be called piecewise smooth, if it is of class C1 on 
R — L, and possesses continuously differentiable left and right bound­
ary values on L. A similar terminology will also be used for differen­
tials and conjugate differentials. 

We first suppose that g is a given, piecewise smooth coefficient of 
a differential on R2 For vector functions W on i?, we then set 

(3.1) | | J F | | O = ƒ ƒ \w\2\g\2dxdy 

and 

(3.2) \\w\\l = \\W\\1 + ƒ ƒ ' { | W.\* + | Ww\'}dxdy. 

For differentials Vdz or conjugate differentials Vdz, \\ V\\Q will denote 
the usual L2 norm of this quantity. We shall also utilize certain 
boundary norms, ( )i/2, which have been introduced in [ l ; 9] and 
whose properties are derived there. We shall not explicitly define 
these norms here and we shall only say that the norms of boundary 
values of functions with finite 1-norms (as defined in (3.2)), are 

We also assume g 9*0 on R. 
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dominated by a constant multiple of the 1-norm of the function, 
where the constant depends essentially only on the geometrical as­
pects of the given transmission problem. 

We now state 

THEOREM 3.1. There exists a constant K, independent of W, such that 

(3.3) \\w\\i Û K^WMWO + (Re(T+W+ - T-W-))1/2 + \\w\\0) 

for all piecewise smooth nXl vector functions W on R. 

From this theorem, we immediately have 

COROLLARY 3.1. For all piecewise smooth vector functions W satisfy­
ing (1.3), 

(3.4) II «111 ^ ^(11^*110 + 1 1 * . 
4. The general existence theorems. In the usual way, we now form 

a real Hubert space H° using the functions W, with || W||o< °°, to­
gether with the scalar product 

(4.1) {Wh W2)o = Re f f W{W2\ g\2dxdy. 

Using the scalar product 

(4.2) (W, J7)i= (Wf Z7) 0 +Re ƒ ƒ {WiUx+ WjUv}dxdy 

we may also form the real Hubert space JET1, which is to be the com­
pletion, with respect to the 1-norm, of the linear manifold of piece-
wise smooth functions W on R. Concerning the spaces H° and fl1, 
we may state 

LEMMA 4.1 (F. RELLICH). The natural imbedding of H1 into H° is a 
compact linear transformation. 

Finally, we denote by iH° the real Hubert space of square integra-
ble conjugate vector differentials on R. 

We now distinguish a subspace D of Hl, which is to consist of the 
completion with respect to the 1-norm, of the linear manifold of piece-
wise smooth functions W, satisfying (1.3). Viewed in H°, the elements 
of D form a dense linear manifold in H°. We may now extend the 
operation d/dz = (d/dx+id/dy)/2 by means of its continuity with 
respect to the 1-norm, as a mapping of elements of H1 into xH°, to all 
functions of D. We shall denote by A the resulting operator with 
domain D. Of course, the elements of the domain D are then pre-
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cisely all possible strong solutions of the problem (1.2)—(1.3). A sim­
ilar discussion applies to the adjoint problem. Concerning this oper­
ator A, we state 

THEOREM 4.1. A s a linear transformation of H° into iH° with domain 
D, the operator A is closed, has a finite-dimensional null space, and 
possesses a closed range of finite codimension in \H°. Further, a con­
jugate differential Fdz lies in the range of the operator A if, and only if 

(4.3) Re f f V'Fdxdy = 0 

for every strong solution V of problem (2.3). 

The proof of this theorem is similar to the proofs dealing with 
existence theorems for normal boundary value problems for elliptic 
differential equations [3; 10 ]. 

5. Homotopy classification of transmission problems. Given two 
transmission problems 

(5.1) W§ = F, Re T+W+ = Re TrW~, v = 0, 1, 

together with all hypotheses of §1, we shall say that these two prob­
lems are homotopically equivalent, if there exists a one-parameter 
family of transmission problems 

(5.2) Wi = F, Re TtW+ = Re TTW~, 0 g t ^ 1, 

each of which satisfies the conditions of §1, with T*(s), (d/ds)T*(s) 
continuous in (s, t), and Tf \ t^o— TQ, T* \ t«i= I f . Homotopy classes 
of matrices have recently been investigated by Boyarskiï [2], and 
his results may, after only minor modifications, be adapted to our 
problem. In order to state the results in a concise form, we make two 
definitions. By the characteristic K of problem (1.2)—(1.3), we shall 
mean the integer 

(5.3) — [arg det (r+, T~)]L. 

By the j-characteristic KJ, we shall mean the integer 

(5.4) — [arg det(r+ T " ) ] ^ ^ ! , ! . . . . ^ . 

We now have 



I 9 6 I ] TRANSMISSION PROBLEMS IN FUNCTION THEORY 569 

THEOREM 5.1. The two problems (5.1) are homotopically equivalent 
if, and only if all of their j-characteristics coincide. 

6. The index of transmission problems. If a denotes the number of 
linearly independent strong solutions of the homogeneous problem 
(1.2)—(1.3) (Wt = 0), and /3 denotes the number of linearly independ­
ent strong solutions of problem (2.3), then, by the index k of problem 
(1.2)—(1.3) we shall mean the integer 

k = a - p. 

We now consider a family Tf, Org/^1 of regular boundary condi­
tions, as in §5. With the aid of the results of §§3, 4, it is now possible 
to define a linear operator Mt of H1 into itself, which is bounded in 
the 1-norm, such that 1 — Mt maps the domain Dt of the operator 
At corresponding to the boundary conditions T* into Do, the domain 
of Ao. Further, Theorem 3.1 may be used to show that the norm of 
Mt satisfies the relation 

(6.1) lim||ifcf,||i = 0. 
<->o 

Consequently, for sufficiently small /, 1 — Mt has an inverse, which 
we write in the form 1 + ilf,. I t is clear that 

(6.2) lim ||If,||! = 0. 
t-*o 

For W in Do, we may now obtain the inequality 

(6.3) 
d + 

— MtW 
dz 

o £ If, iXo(MoTT o + TT o). 

If we set Bt=(d/dz)Mt, we see from (6.3) that the operator Bt is A-
bounded, in the terminology of [4], and that its A -norm is small, 
provided that / is small. We may now apply theorems in the invari­
ance of the index [4; 5] to the operators A +Bt. Together with Theo­
rem 5.1 and the fact that 1 + M, is a continuously invertible mapping 
of Do onto Dt, we may now derive 

THEOREM 6.1. The index k of problem (1.2)—(1.3) is given by the 
relation 

(6.4) k « 2 ( « - » ( * - 1)). 

Formula (6.4) is obtained by connecting the given problem with a 
simple problem, whose index may be established through the Rie-
mann-Roch theorem. 
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