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1. Flows on surfaces of constant negative curvature have been in­
vestigated for some time. The geodesic flow [3] and the horocycle 
flow [2] have known minimal and ergodic properties. These flows 
may be looked at as flows induced on a three dimensional homo­
geneous space by a one parameter subgroup of a Lie group [4]. 
This idea has been carried further in [ l ; 5] where one parameter 
flows on general nilmanifolds are studied. 

The manifolds considered here are all compact manifolds of the 
form G/D where G is a noncompact connected, simply connected 
three dimensional Lie group and D a discrete uniform subgroup. If 
<t>: T—+G is a one parameter subgroup of G, then the one parameter 
flow defined by t(gD) = cj>(t)gD, is an action of the reals on G/D. The 
classification as to which of these flows are minimal and which are 
ergodic is now complete. In this note we outline this classification; 
complete proofs will be presented elsewhere. 

There are only three cases to consider: simple, nilpotent, and solva­
ble but not nilpotent. 

2. G simple. If G is simple and noncompact then its Lie algebra 
® is isomorphic to the Lie algebra of the two by two real matrices 
with trace zero. Each one parameter subgroup of G is of the form 
0(O=exp Xt, where Î G ® . Let G(2) be the group of all 2X2 real 
matrices of determinant one. G is the universal covering group of 
G(2) and we let rj be the covering homomorphism rj: G—>G(2). 

THEOREM 1. If D is a discrete uniform subgroup of G then the map­
ping \f/: G/D—*G(2)/ri(D) given by \fs(gD) =zr}{g)y){D) is a finite covering 
and rj(D) is discrete. 

THEOREM 2. Let G be the connected, simply connected, noncompact, 
three dimensional, simple Lie group ; and let Dbea discrete uniform sub-
group of G; and let <j>(t) =exp Xt. The following statements hold: 

(1) If X has real nonzero eigenvalues the one parameter flow induced 
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by <f>(t) on G/D has infinitely many closed orbits, and is thus not mini­
mal. This flow is ergodic. 

(2) If X has only zero eigenvalues then the one parameter flow induced 
by <j>(t) on G/D is minimal and ergodic. 

(3) If X has nonzero complex eigenvalues then the one parameter flow 
induced by <f)(t) on G/D is equivalent to an action on G/D by the circle 
group and is thus neither minimal nor ergodic. 

Theorem 1 is used to reduce the proof of Theorem 2 to the geodesic 
flow [3; 4] or the horocycle flow [2], 

3. G nilpotent. The complete classification of flows on nilmanifolds 
has been worked out in [ l ; 5] and, if [G, G] is the commutator of G, 
it reads as follows: 

THEOREM 3. If G is a connected, simply connected nilpotent Lie 
group-, and D a discrete uniform subgroup-, and <j>(t) a one parameter 
subgroup-, then the flow induced by 4>(t) on G/D is always distal. Fur­
thermore, it is ergodic (minimal) if and only if the flow induced on the 
torus G/D[G, G] by <j>(t) is ergodic (minimal). 

4. G solvable. We let G\ be the set of matrices of the form 

[ cos 2TTZ sin 2wz 0 x) 

— sin 2TTZ cos 2TZ 0 y 

0 0 1 z\ 

I 0 0 0 l j 

where x, y, z are real numbers. We let G2 be the set of matrices of the 
form 

(ekz 0 0 x) 

0 e~kz 0 y\ 

0 0 1 » 

(o o o ij 

where x, y, z are real numbers, and k is a fixed nonzero real number 
such that e~h+ek is an integer. 

THEOREM 4. If G is a connected, simply connected, three dimensional, 
solvable Lie group and D is a discrete uniform subgroup, then one of the 
following is true. 

(1) G is nilpotent. 
(2) G is isomorphic to Gi and D is generated by 
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1 0 0 « i | [1 0 O vi 

O 1 O u2\ O 1 O v2 

o o 1 o r o o 1 o r I o 
O O O 1 j [o O O 1 J l O 

where n is a fixed integer, p is either 2, 3, 4, or 6, and 

Ui U2 

Vi V2 

(3) G is isomorphic to G\ and D is generated by 

cos 2irn/p sin 2wn/p O 0] 

sin lirn/p cos 2wn/p O O 

O 

O 

9*0. 

1 O O 11 

0 1 0 0 

0 0 1 0 

0 0 0 1 

1 O O 

O 1 O 

O O 1 

0 0 0 

fl O O «i 

O 1 O u2 

O O 1 n 

0 0 0 1 

where n is a fixed integer and U\ and u2 are fixed real numbers. 
(4) G is isomorphic to G2 and D is generated by 

1 0 0 uS 

0 1 0 u2 

0 0 1 0 

0 0 0 1 . 

) 

1 0 0 vx
y 

0 1 0 v2 

0 0 1 0 

0 0 0 1 , 

y 

'ekn 

0 

0 

0 

0 

e-kn 

0 

0 

0 

0 

1 

0 

0 

0 

n 

1. 

where n is a fixed integer and 

U\ U2 

Vi V2 

9*0. 

1 

0 

If, for the sake of brevity, we write the matrices of G\ and G2 as 
columns 

x 

y 

z 

then the one parameter subgroups of Gi are in one of the following 
forms. 

(at) 

(i) 

(2) 

bt\ t a and b are real numbers. 

0 . 
a sin 2wct + b[co$ 2irct — l]] 

b sin 2Tct — a [cos 2wct — l] 

ct 
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a, b, c, real numbers and C5*0. The one parameter subgroups of G2 

have the following forms. 

(i) 

(2) 

at) 

bt 

0 

\a(ekct - 1) ] 

b(e-kct _ ! ) 

ct 

a and b real numbers. 

a, 6 and c real numbers 

and C5*0. 
In either Gi or G2 we refer to these as one parameter groups of the 

first and second type respectively. 

THEOREM 5. If Gis a connected, simply connected, three dimensional, 
non-nilpotent solvable Lie group, D a discrete uniform subgroup, and 
<f>: T-+G a one parameter subgroup, then one of the following is true. 

(1) If G is isomorphic to G\, D is as in Theorem 4 number (2), and 
<f> is of the first type, then the flow is neither ergodic nor minimal. If <t> 
is of the second type, then the flow is equivalent to the action of a circle 
group and is thus neither ergodic nor minimal. 

(2) If G is isomorphic to G2, D as in Theorem 4 number (4), and <j> is 
of the first type, then the flow is neither ergodic nor minimal. If4>is of the 
second type then the flow is ergodic and has a closed orbit and is thus not 
minimal. 

(3) If G is isomorphic to G\, D as in Theorem 4 number (3), and <f> is 
of the first type, then the flow is neither ergodic nor minimal. If<f> is of the 
second type, then the flow is equivalent to a straight line flow on the three 
dimensional torus and thus has the same minimal and ergodic properties. 
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