## FLOWS ON SOME THREE DIMENSIONAL HOMOGENEOUS SPACES

BY L. AUSLANDER, 1 L. GREEN 2 AND F. HAHN

Communicated by W. S. Massey, May 17, 1961

1. Flows on surfaces of constant negative curvature have been investigated for some time. The geodesic flow [3] and the horocycle flow [2] have known minimal and ergodic properties. These flows may be looked at as flows induced on a three dimensional homogeneous space by a one parameter subgroup of a Lie group [4]. This idea has been carried further in [1; 5] where one parameter flows on general nilmanifolds are studied.

The manifolds considered here are all compact manifolds of the form G/D where G is a noncompact connected, simply connected three dimensional Lie group and D a discrete uniform subgroup. If  $\phi \colon T \to G$  is a one parameter subgroup of G, then the one parameter flow defined by  $t(gD) = \phi(t)gD$ , is an action of the reals on G/D. The classification as to which of these flows are minimal and which are ergodic is now complete. In this note we outline this classification; complete proofs will be presented elsewhere.

There are only three cases to consider: simple, nilpotent, and solvable but not nilpotent.

2. G simple. If G is simple and noncompact then its Lie algebra  $\mathfrak{G}$  is isomorphic to the Lie algebra of the two by two real matrices with trace zero. Each one parameter subgroup of G is of the form  $\phi(t) = \exp \overline{X}t$ , where  $\overline{X} \in \mathfrak{G}$ . Let G(2) be the group of all  $2 \times 2$  real matrices of determinant one. G is the universal covering group of G(2) and we let  $\eta$  be the covering homomorphism  $\eta: G \rightarrow G(2)$ .

THEOREM 1. If D is a discrete uniform subgroup of G then the mapping  $\psi: G/D \rightarrow G(2)/\eta(D)$  given by  $\psi(gD) = \eta(g)\eta(D)$  is a finite covering and  $\eta(D)$  is discrete.

THEOREM 2. Let G be the connected, simply connected, noncompact, three dimensional, simple Lie group; and let D be a discrete uniform subgroup of G; and let  $\phi(t) = \exp \overline{X}t$ . The following statements hold:

(1) If  $\overline{X}$  has real nonzero eigenvalues the one parameter flow induced

 $<sup>^{\</sup>rm 1}$  Research supported by N. S. F. Grant 15565 and O. O. R. contract SAR-DA-19020-ORD 5254.

<sup>&</sup>lt;sup>2</sup> Research supported by N. S. F. Grant 11287.

by  $\phi(t)$  on G/D has infinitely many closed orbits, and is thus not minimal. This flow is ergodic.

- (2) If  $\overline{X}$  has only zero eigenvalues then the one parameter flow induced by  $\phi(t)$  on G/D is minimal and ergodic.
- (3) If  $\overline{X}$  has nonzero complex eigenvalues then the one parameter flow induced by  $\phi(t)$  on G/D is equivalent to an action on G/D by the circle group and is thus neither minimal nor ergodic.

Theorem 1 is used to reduce the proof of Theorem 2 to the geodesic flow [3; 4] or the horocycle flow [2].

3. G nilpotent. The complete classification of flows on nilmanifolds has been worked out in [1; 5] and, if [G, G] is the commutator of G, it reads as follows:

THEOREM 3. If G is a connected, simply connected nilpotent Lie group; and D a discrete uniform subgroup; and  $\phi(t)$  a one parameter subgroup; then the flow induced by  $\phi(t)$  on G/D is always distal. Furthermore, it is ergodic (minimal) if and only if the flow induced on the torus G/D[G, G] by  $\phi(t)$  is ergodic (minimal).

4. G solvable. We let  $G_1$  be the set of matrices of the form

$$\begin{cases}
\cos 2\pi z & \sin 2\pi z & 0 & x \\
-\sin 2\pi z & \cos 2\pi z & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{cases}$$

where x, y, z are real numbers. We let  $G_2$  be the set of matrices of the form

$$\begin{cases}
e^{kz} & 0 & 0 & x \\
0 & e^{-kz} & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{cases}$$

where x, y, z are real numbers, and k is a fixed nonzero real number such that  $e^{-k} + e^k$  is an integer.

THEOREM 4. If G is a connected, simply connected, three dimensional, solvable Lie group and D is a discrete uniform subgroup, then one of the following is true.

- (1) G is nilpotent.
- (2) G is isomorphic to  $G_1$  and D is generated by

$$\begin{bmatrix} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & v_1 \\ 0 & 1 & 0 & v_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} \cos 2\pi n/p & \sin 2\pi n/p & 0 & 0 \\ -\sin 2\pi n/p & \cos 2\pi n/p & 0 & 0 \\ 0 & 0 & 1 & n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where n is a fixed integer, p is either 2, 3, 4, or 6, and

$$\left|\begin{array}{cc} u_1 & u_2 \\ v_1 & v_2 \end{array}\right| \neq 0.$$

(3) G is isomorphic to  $G_1$  and D is generated by

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & n \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

where n is a fixed integer and u<sub>1</sub> and u<sub>2</sub> are fixed real numbers.

(4) G is isomorphic to  $G_2$  and D is generated by

$$\begin{bmatrix} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & v_1 \\ 0 & 1 & 0 & v_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} e^{kn} & 0 & 0 & 0 \\ 0 & e^{-kn} & 0 & 0 \\ 0 & 0 & 1 & n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where n is a fixed integer and

$$\left|\begin{array}{cc} u_1 & u_2 \\ v_1 & v_2 \end{array}\right| \neq 0.$$

If, for the sake of brevity, we write the matrices of  $G_1$  and  $G_2$  as columns

$$\left(\begin{array}{c} x \\ y \\ z \end{array}\right)$$

then the one parameter subgroups of  $G_1$  are in one of the following forms.

(2) 
$$\begin{bmatrix} a \sin 2\pi ct + b[\cos 2\pi ct - 1] \\ b \sin 2\pi ct - a[\cos 2\pi ct - 1] \\ ct \end{bmatrix},$$

a, b, c, real numbers and  $c \neq 0$ . The one parameter subgroups of  $G_2$  have the following forms.

(1) 
$$\begin{vmatrix} at \\ bt \\ 0 \end{vmatrix}, \quad a \text{ and } b \text{ real numbers.}$$

(2) 
$$\begin{bmatrix} a(e^{kct}-1) \\ b(e^{-kct}-1) \\ ct \end{bmatrix}, \quad a, b \text{ and } c \text{ real numbers}$$

and  $c \neq 0$ .

In either  $G_1$  or  $G_2$  we refer to these as one parameter groups of the first and second type respectively.

THEOREM 5. If G is a connected, simply connected, three dimensional, non-nilpotent solvable Lie group, D a discrete uniform subgroup, and  $\phi: T \rightarrow G$  a one parameter subgroup, then one of the following is true.

- (1) If G is isomorphic to  $G_1$ , D is as in Theorem 4 number (2), and  $\phi$  is of the first type, then the flow is neither ergodic nor minimal. If  $\phi$  is of the second type, then the flow is equivalent to the action of a circle group and is thus neither ergodic nor minimal.
- (2) If G is isomorphic to  $G_2$ , D as in Theorem 4 number (4), and  $\phi$  is of the first type, then the flow is neither ergodic nor minimal. If  $\phi$  is of the second type then the flow is ergodic and has a closed orbit and is thus not minimal.
- (3) If G is isomorphic to  $G_1$ , D as in Theorem 4 number (3), and  $\phi$  is of the first type, then the flow is neither ergodic nor minimal. If  $\phi$  is of the second type, then the flow is equivalent to a straight line flow on the three dimensional torus and thus has the same minimal and ergodic properties.

## BIBLIOGRAPHY

- 1. L. Auslander, F. Hahn, L. Markus, Topological dynamics on nilmanifolds, Bull. Amer. Math. Soc. vol. 67 (1961) pp. 298-299.
- 2. G. A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. vol. 2 (1936) pp. 530-542.
- 3. E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl. vol. 51 (1939) pp. 261-304.
- 4. I. M. Gelfand and S. V. Fomin, Geodesic flows on manifolds of constant negative curvature, Amer. Math. Soc. Translations Series 2, vol. 1, 1955, pp. 49-65.
  - 5. L. Green, Spectra of nilflows, Bull. Amer. Math. Soc. vol. 67 (1961) pp. 414-415.

INDIANA UNIVERSITY,

YALE UNIVERSITY AND UNIVERSITY OF MINNESOTA