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The purpose of the present note is to announce the following: 

THEOREM 1. A compact Kaehler manifold with positive definite Ricci 
tensor is simply connected. 

We say that the first Chern class of a compact Kaehler manifold is 
positive definite if it can be represented by a real closed (1, l)-form 
which is positive in the sense of Kodaira [2]. The first Chern class 
of a manifold satisfying the assumption in Theorem 1 is necessarily 
positive definite. Theorem 1 follows from the following two theorems. 

THEOREM 2. If the first Chern class of a compact Kaehler manifold M 
is positive definite, then the fundamental group of M has no proper sub­
group of finite index. 

THEOREM OF MYERS. The fundamental group of a compact Rieman-
nian manifold with positive definite Ricci tensor is finite [3]. 

Theorem 2 can be proved by Kodaira's Vanishing Theorem and by 
the Riemann-Roch Theorem of Hirzebruch. Let gp be the dimension of 
the space of holomorphic ^-forms on M. Then x(M) = ]C*=o (~~ l)p&p> 
where n = dimc M, is called the arithmetic genus of M. If M is 
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algebraic, then x(M) is given as the integral over M of a polynomial in 
Chern classes d of weight n, polynomial depending only on ny not on 
M [ l ] . From this follows that if M* is a Mold covering space of M, 
then x(M*)=k-x(M). On the other hand, if the first Chern class is 
positive definite, then gp = 0 for l^p^n [2] and, hence, the arith­
metic genus is 1. If the first Chern class of M is positive definite, so 
is the first Chern class of M*. Hence, x(M*) = x ( ^ 0 = 1> proving that 
jfe=l. 

Note that Theorem 2 can be rephrased as follows. If the first Chern 
class of M is positive definite, then every holomorphic transformation 
of finite period has fixed points. 

In view of the fact that we know no example of a compact Kaehler 
manifold with positive definite first Chern class whose Ricci tensor 
is not positive definite, we conjecture that M is simply connected 
under the assumption of Theorem 2. 
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