BIBLIOGRAPHY

- 1. M. G. Barratt, Truck groups. I, Proc. London Math. Soc. vol. 5 (1955) pp. 71-106.
- 2. R. Bott, The stable homotopy of the classical groups, Ann. of Math. vol. 70 (1959) pp. 313-337.
- 3. I. M. James, The intrinsic join: a study of the homotopy groups of Stiefel manifolds, and Cross-sections of Stiefel manifolds, Proc. London Math. Soc. vol. 8 (1958) pp. 507-636 and pp. 536-547.
- 4. ——, Whitehead products and vector fields on spheres, Proc. Cambridge Philos. Soc. vol. 53 (1957) pp. 817-820.
- 5. H. Toda, Composition methods in homotopy groups of spheres, to be published in Annals of Mathematics Studies, Princeton University.
- 6. G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. vol. 51 (1950) pp. 192-237.
- 7. J. H. C. Whitehead, On the groups $\pi_r(V_{n,m})$ and sphere-bundles, Proc. London Math. Soc. vol. 48 (1944) pp. 243–291.

THE INSTITUTE FOR ADVANCED STUDY AND UNIVERSITY OF KYOTO

COMPACT KAEHLER MANIFOLDS WITH POSITIVE RICCI TENSOR

BY SHOSHICHI KOBAYASHI Communicated by I. M. Singer, March 6, 1961

The purpose of the present note is to announce the following:

THEOREM 1. A compact Kaehler manifold with positive definite Ricci tensor is simply connected.

We say that the first Chern class of a compact Kaehler manifold is positive definite if it can be represented by a real closed (1, 1)-form which is positive in the sense of Kodaira [2]. The first Chern class of a manifold satisfying the assumption in Theorem 1 is necessarily positive definite. Theorem 1 follows from the following two theorems.

THEOREM 2. If the first Chern class of a compact Kaehler manifold M is positive definite, then the fundamental group of M has no proper subgroup of finite index.

THEOREM OF MYERS. The fundamental group of a compact Riemannian manifold with positive definite Ricci tensor is finite [3].

Theorem 2 can be proved by Kodaira's Vanishing Theorem and by the Riemann-Roch Theorem of Hirzebruch. Let g_p be the dimension of the space of holomorphic p-forms on M. Then $\chi(M) = \sum_{p=0}^{n} (-1)^p g_p$, where $n = \dim_{\mathbb{C}} M$, is called the arithmetic genus of M. If M is

algebraic, then $\chi(M)$ is given as the integral over M of a polynomial in Chern classes c_i of weight n, polynomial depending only on n, not on M [1]. From this follows that if M^* is a k-fold covering space of M, then $\chi(M^*) = k \cdot \chi(M)$. On the other hand, if the first Chern class is positive definite, then $g_p = 0$ for $1 \le p \le n$ [2] and, hence, the arithmetic genus is 1. If the first Chern class of M is positive definite, so is the first Chern class of M^* . Hence, $\chi(M^*) = \chi(M) = 1$, proving that k = 1.

Note that Theorem 2 can be rephrased as follows. If the first Chern class of M is positive definite, then every holomorphic transformation of finite period has fixed points.

In view of the fact that we know no example of a compact Kaehler manifold with positive definite first Chern class whose Ricci tensor is not positive definite, we conjecture that M is simply connected under the assumption of Theorem 2.

REFERENCES

- 1. F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 9, Berlin, Springer, 1956.
- 2. K. Kodaira, On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U.S.A. vol. 39 (1953) pp. 1268-1273.
- 3. S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. vol. 8 (1941) pp. 401-404.

University of British Columbia, Vancouver, B. C., Canada