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The object of this note is the discussion of certain linear boundary 
value problems associated with the theory of linear elliptic systems 
of partial differential equations in two independent variables. Such 
problems were treated for multiply connected plane domains by I. N. 
Vekua [lO], who successfully applied a technique utilizing singular 
integral equations. The results suggested the possibility of studying 
these problems for domains which are not schlicht. Unfortunately, 
the methods developed by Vekua did not lend themselves to gen­
eralization without scrutiny (see [&]). It appeared best, therefore, to 
restudy the question from an entirely different viewpoint. This in­
volved an independent treatment of boundary value problems for 
analytic functions [3; 4; 7; 9] . Below, we shall indicate how results 
for such problems in the theory of analytic functions may be trans­
ferred to results for corresponding problems in the theory of pseudo-
analytic functions. Proofs and further theorems will appear else­
where. 

1. Formulation of the Riemann-Hilbert problem. Letting D denote 
a given Riemann surface of finite genus, with a boundary D consist­
ing of a finite number of Liapounov curves, i.e., curves with Holder 
continuously turning tangents, and interior Do, we shall now pose a 
boundary value problem which we denote by RH(a, &, 7, A). Here 
A and 7 are to be given functions on D, with |A| = 1 and 7 real. 
Furthermore, A is to be Holder continuously differentiate, while 7 
is assumed to be Holder continuous, a and b are given coefficients of 
a conjugate differential on Do, i.e., adz and bdz are invariant under 
conformai transformations. We assume here that a and b are bounded 
and measurable in the sense that if g is the coefficient of a nonvanish-
ing, continuous differential on D, i.e., gdz is invariant under con-
formal transformations, then a/g, b/g are bounded, measurable func­
tions on DQ. The problem RH(a, ô, 7, A) will consist of finding func­
tions w continuous on D, such that 

(1.1) Wi = aw + bw 

in £>o, and 
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(1.2) Re(Aw) = y 

on Z). Because of the lack of a hypothesis concerning the smooth­
ness of the coefficients a and &, the relation (1.1) must, as usual, be 
interpreted in a weak sense. 

Together with the problem RH(a, b, 7, A), we shall also consider 
the homogeneous adjoint boundary value problem RH*(a, b, 0, A) for 
continuous coefficients v of differentials, which are to satisfy the rela­
tions 

(1.3) Vz — — av — hv 

in D0, and 

(*3-(1.4) Re 

on D. 

2. The operators Tand r* . Let {TFy},i=l , • • • , A be a complete 
set of linearly independent solutions of RH(0, 0, 0, A); let { Vi), 
/ = 1 , • • • , B be a complete set of linearly independent solutions of 
RH*(0, 0, 0, A). Define the functions 

hj = iAWjy i = 1, • • . , 4 ; 

(2.1) _ dz 
ki = t A 7 i — , / = 1, • • • ,B, 

ds 
on D. Suppose that the functions %i, / = 1, • • • , B; hj,j=l, • • • , ^4, 
are a set of Holder continuously diffèrentiable, real-valued functions 
on D with the property that the matrices 

(2.2) ( J kikmds\ l, m = 1, • • • , B 

and 

(2.3) (f.hAds), j,n= 1, - • - , A 

are of rank B and A, respectively. We then define linear operators T 
and T* through the requirements 

(2.4) (Tw)i = aw + bw in D0, 
B 

(2.5) Re ATw = X) *^* on D, 
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(2.6) f Jîy(Im ATw)ds = 0, j = 1, - • - , A, 

(2.7) (T*v), = - av - hv in D0, 

dz A 

(2.8) Re Â — T*v = X) M / o n D> 
ds y„i 

(2.9) f J&if lml— Z*v)<k = 0, / = 1, • • • , B. 

These operators are at first defined for w and v which are continuously 
differentiate on D. The relations (2.4) and (2.7) are to be understood 
to hold in a generalized sense. The quantities Ki and Xy are suitable 
real constants, uniquely determined by w and v in such a way, that 
Tw and T*v may always be defined. The operators T and T* are 
"adjoints" with respect to the "scalar product" 

(2.10) [w, v] = Im 2i I I (av + hv)wdxdy. 

3. A coercive inequality. In his work on elliptic equations, Martin 
Schechter showed that boundary conditions of the type considered 
here, for first order elliptic equations, lead to coercive inequalities 
[6]. In order to state this result for the special problems here, we 
introduce the norms 

(3.1) \\w\\l = ƒ ƒ \w\*\g\*dxdy, 

(3.2) IMIî = IM|î + ƒ ƒ Hw*I2 + l«vl,}<***y 

for functions w on D, 

(3.3) < 7 ) l = J ó V 7 l 2 + ra \dS' 
for functions 7 on l), and 

(3.4) \\v\\l = jjè \v \Hxiy 

for differentials vdz, or conjugate differentials vdz on P . Here g is to 
be an arbitrary but, from now on, fixed coefficient of a nonvanishing 
continuous differential on D. We then have 

file:///Hxiy


374 WALTER KOPPELMAN [July 

LEMMA 3.1. There exists a constant K which depends only on A and 
D, such that for all functions w, continuously differentiable on D, 

(3.5) | H | i =g # ( N | o + <ReAw)i + |H|o). 

Next, we introduce the Hubert space °i?o of square summable 
functions w with norms |Jw||o and also the Hubert space lH0 of square 
summable differentials vdz with norms |(t;||o. With the aid of Lemma 
3.1 and Rellich's lemma [2], one can now prove 

LEMMA 3.2. The operator T(T*) may be extended to the entire Hubert 
space °Ho(1Ho) as a compact linear operator. 

We now remark that, although JT* appears to be the adjoint of T 
with respect to a representation of the bounded linear functional on 
QHQ of the form (2.10), extreme care must be exercised, since this 
representation (2.10) is not faithful. However, the theory of pseudo-
analytic functions itself, together with the particular definitions of 
the operators T and T*, lead to the conclusion that the usual Fredholm 
theorems governing the nature of the null spaces and ranges of the 
operators 1 — T and 1 — T* hold. 

4. The main theorems. In order to prove the main theorems, we 
use a theorem on the regularity of the solutions of the Fredholm 
equations, which we state as 

LEMMA 4.1. If Wis analytic in Do and Holder continuous on D, and if 
w is a function in °H0 satisfying 

(4.1) w - Tw = W, 

then w is also Holder continuous2 on D and satisfies (1.1) in J90. 

An analogous statement holds for the operator T*. 
Our first basic result is contained in 

THEOREM 4.2. The problems RH(a, ô, 0, A) and RH*(a, 6, 0, A) 
possess only finitely many linearly independent solutions. If A and B 
denote the number of linearly independent solutions of the problems 
RH(0, 0, 0, A), RH*(0, 0, 0, A) respectively, while A' and B' denote 
the number of linearly independent solutions of RH(a, &, 0, A) and 
RH*(a, by 0, A), then 

(4.2) A - B = A' - B'. 

The second result concerns the solvability of problems with in-
homogeneous boundary data. 

Possibly only after correction on a set of measure zero. 
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THEOREM 4.3. The problem RH(a, b, y, A) possesses a solution if, and 
only if, 

(4.3) flyvdz = 0 

for every solution v of RH*(a, b, 0, A). 

5. The Hubert problem.3 It is important to observe that the tech­
niques which we have applied to the problems RH(a, b, 7, A) may 
also be used for an entirely different set of problems H (a, b, g, G), 
which we now formulate. In this case, we work with a closed Rie-
mann surface R and a system L of closed, disjoint and oriented 
Liapounov curves. Once these curves are given a definite orientation, 
we may associate a left or ( + ) edge and a right or ( —) edge with L. 
Here G and g are given complex-valued functions on L, with G9*0. 
We furthermore assume that G is Holder continuously differentiate, 
while g is Holder continuous. The problem H (a, b, g, G) now consists 
of finding functions w, piecewise continuous on R and continuous 
on R—L, which satisfy ( l . l ) o n i ? — L and the jump condition 

(5.1) w+ = Gw~ + g 

across L. Together with H (a, b, g, G), we again consider a homo­
geneous adjoint problem H*(a, ô, 0, G) for piecewise continuous 
differentials viz satisfying (1.3) on R—L, and the jump condition 

(5.2) v+ = G~h-

across L. One may obtain an analogue of Theorem 4.2. The result 
corresponding to Theorem 4.3 is now stated as 

THEOREM 5.1. The problem H(a, b, g, G) possesses a solution if, and 
only if 

(5.3) Im (gv+dz = 0 

for every solution v of H*(a, b, 0, G). 

As an interesting consequence of the theorems in this section and 
information concerning similar problems for the Cauchy-Riemann 
equations [4], we obtain 

THEOREM 5.2 (RIEMANN-ROCH THEOREM FOR PSEUDOANALYTIC 

FUNCTIONS). Let Rbe a closed Riemann surface of genus h and d a divi-

* Some previous work concerning the Hubert problem for differential equations 
on spheres can be found in [5]. 
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sion on R, of order n. Let A be the number of linearly independent solu­
tions of (1.1) which are multiples of d~l on R and let B be the number of 
linearly independent solutions of (1.3) which are multiples of d on R. 
Then 

(5.4) A - B = 2(n - h+ 1). 

This generalizes a result of Bers [l ] who stated this Riemann-Roch 
theorem under the additional assumption that equation (1.1) pos­
sesses two linearly independent solutions which are regular every­
where on R. 

6. Concluding remarks. The essential feature of this paper is the 
utilization of variational techniques to solve the boundary value prob­
lems which we have stated, in the large. One disadvantage of this 
method, however, lies in the necessity of requiring excessive smooth­
ness conditions on the boundary data, in this case, the functions A 
and G. A comparison of our results with those of Vekua [lO], in the 
case of the Riemann-Hilbert problem for plane domains, reveals this 
fact quite clearly. It is to be hoped that further work will remove such 
restrictions. 
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