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1. A general theory of surface area, [1; 2], exists for the non-
parametric case. Thus, area is defined for all measurable f on the unit
square Q=1IXJ. The area functional is lower semi-continuous with
respect to almost everywhere convergence and agrees with the
Lebesgue area for continuous f. On the other hand, for continuous
parametric mappings T of the closed unit square Q into euclidean
3-space Es, Lebesgue area is not lower semi-continuous with respect
to almost everywhere convergence nor even, as C. J. Neugebauer has
shown, [3], with respect to pointwise convergence.

It thus appears that a theory of parametric surface area must be
restricted to surfaces which cannot deviate too far from the ones given
by continuous mappings. In this paper, we develop the beginnings of
a theory for a class of surfaces which we call linearly continuous.

2. Let f be a real function defined on Q and, for every «, let f, be
defined by f.(v) =f(u, v) and let f, be defined similarly. Then f is
linearly continuous if f, is continuous for almost all # and f, is con-
tinuous for almost all ». A mapping T:x=x(u, v), y=y(u, v),
2=23(u, v) of Q into E; is linearly continuous if x, ¥, z are linearly con-
tinuous.

A sequence {f.} of functions converges linearly to a function f if
(fa)u converges uniformly to f, for almost all %, and (f.), converges
uniformly to f, for almost all 9. A sequence Tn:x=x,(4,v), y=1y.(%, v),
z=2,(u, v) converges linearly to a mapping T: x =x(u, v), y=y(u, v),
z=3(u,v) if {x.}, {7.}, {2.} converge linearly to x, y, 2, respectively.

Let P be the set of quasi linear mappings from Q into E;. For
P, ¢€Q let

d(p, q¢) = inf[k: there are sets 4, C I, B C J,

m(Ag) > 1 — k, m(Bx) > 1 — k, and | p(u,0) — qu,v)| <k

on (Ax X J)\U (I X By].

It is easy to verify that P is a metric space and that {p,.} converges
to p in this space if and only if it converges linearly. Let E be the
elementary area functional on P. It is not hard to prove
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THEOREM 1. E is lower semi-continuous on P. In other words, if
{pn} converges linearly to p then lim inf E(p,) = E(p).

By the Fréchet extension theorem, E is extended to a lower semi-
continuous functional ® on the completion £ of P.

THEOREM 2. The completion £ of P is the space of linearly continuous
mappings with the metric corresponding (as above) to linear conver-
gence.

3. Itis obvious that for every continuous mapping T, 4(T) =®(T)
where A (T) is the Lebesgue area. The inverse inequality holds so that
the functional ® constitutes a legitimate extension of Lebesgue area
to substantially wider class of mappings than the continuous ones. We
outline the proof.

For a continuous T': x=x(u, v), y=9y(u, v), 2=2(u, v), the lower
area V(T) is defined as follows:

Let Tyv:y=y(u, v), z=2(u, v), T:x=x(u, v), 2=2(u, v), and
Ts: x=x(u, v), y=7y(u, v) be the associated flat mappings. For every
simple polygonal region P in Q9, let

0n(P) = f | 0@, T.PY |,

where the integration is over the yz plane, and O(¢, T1P¥) is the topo-
logical index of T, P* at £ (49 and A* are the interior and boundary,
respectively, of a set 4). Define 1:(P) and v;(P), similarly, and let

o(P) = [01(P)? + va(P)? + vs(P)?]'"2.
Let #=(Py, - - -, P,) be a finite set of pair-wise disjoint simple
polygonal regions in Q° and

n

v(r) = E v(Py).

=1
Finally, let
V(T) = sup[o(n): =].

Cesari has shown (e.g. [4]) that A(T) = V(T) for every continuous
T.
The distance between 2 sets 4 and B is defined by

d(4, B) = supld(x, B): x € A] + supld(y, 4): y € B].

With this metric, the set a of simple polygonal regions is a separable
metric space. Let BCa be dense in a and
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Vs = suple(x): = C 8].
LEMMA 1. V(T) = V(D).

Now, let {T,.} be a sequence of continuous mappings which con-
verges linearly to a continuous mapping 7. Let v be the set of simple
polygonal regions whose boundaries consist of line segments parallel
to the coordinate axes for which T"and T,, %=1, 2, - - - are continu-
ous and on each of which { 7.} converges uniformly to T. For each
7 Cx, lim inf v(w, T,) Zv(w, T). Since v is dense in «, it follows that
lim inf V(T,) = V(T). This proves

THEOREM 3. A(T) is lower semi-continuous with respect to linear con-
vergence on the set of continuous mappings.

CoROLLARY 1. A(T) =®(T) for every continuous T.

Proor. For every sequence { p,.} of quasi-linear mappings con-
verging linearly to T, lim inf E(P,)2A4(T). Choose { p,.} so that
lim E(pn) =®(T). Then A(T) =®(7),

4. A set S will be called negligible if SCZ:XZ, where Z; and Z,
have linear measure zero. Kolmogoroft’s principle holds in the follow-
ing form.

THEOREM 4. If T and T, are linearly continuous mappings from
Q into E; and if for every pair of points &, n not belonging to a negligible
set

| Ts¢ — T| < | Tot — Ty,
then q’(Tl) é@(Tz)

5. A real function f on Q is BVC if for almost all # and almost all
v, fu and f, are equivalent to functions of bounded variation and the
corresponding variation functions are summable. f is ACE if for al-
most all # and almost all v, f, and f, are equivalent to absolutely con-
tinuous functions.

For functions which are BVT and ACT it is a simple known fact
that the integral means commute with the partial derivatives. This
also holds almost everywhere for functions which are BVC and ACE.
Using this fact and the fact, [5], that if f is BVC and linearly con-
tinuous then the integral means of f converge linearly to f, the proof
of the following generalization of a theorem of Morrey, [4], may be
obtained in somewhat standard fashion. The generalization is in two
directions. Instead of holding only for conjugate Lebesgue spaces, the
theorem holds for conjugate Kothe spaces, [6; 7], and the theorem
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holds for linearly continuous mappings rather than just for continu-
ous ones.

THEOREM 5. If the functions x, y, 2 of a linearly continuous T are
BVC and ACE and if the pairs of partial derivatives (xu, ¥»), (%s, Yu),
(%4 20), (Xo, 2u), Yuy 20), (s, 2.) belong to conjugate Kothe spaces, the
area B(T) is given by the formula

&(T) = f]dudv

where J= [T+ T2+ J2|V2 and Ji, J2, Js are the jacobians of T, Ty, Ts,
respectively.

6. We define an equivalence relation for linearly continuous map-
pings. T is equivalent to T7(T = T") if there are sequences {p,.} and
{q,.} of quasi linear mappings such that, for every #, p,=~¢, in the
Lebesgue sense and { p,.} converges linearly to T, {q,.} converges
linearly to T".

The following simple facts hold:

(a) The relation “ =” has the properties of an equivalence relation.

(b) If Tand T” are continuous and Fréchet equivalent then T'= 7",

(c) f T=T' then ®(T)=9(T").

We refer to an equivalence class as a surface and to its elements as
representations.

D mappings, the Dirichlet integral, and almost conformal map-
pings are defined as for the continuous case, [4], with BVT and ACT
replaced by BVC and ACE.

We say that a mapping T is simple if there is a negligible set S
such that £€Q—S, n€Q—3S, £5n implies T(£) = T(n).

The following holds:

THEOREM 6. If T' is a linearly continuous simple mapping and
P(T”") < =, the surface given by T’ has a representation T, with jacobian
J, such that

B(T") = &(T) = f 7 dudb.

COROLLARY. Every linearly continuous nonparametric surface of fi-
nite area has a parametric representation T, with jacobian J, such that

(7T = f] dudv
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