AREA OF DISCONTINUOUS SURFACES

BY CASPER GOFFMAN1

Communicated by J. W. T. Youngs, January 19, 1961

1. A general theory of surface area, [1; 2], exists for the non-parametric case. Thus, area is defined for all measurable f on the unit square $Q = I \times J$. The area functional is lower semi-continuous with respect to almost everywhere convergence and agrees with the Lebesgue area for continuous f. On the other hand, for continuous parametric mappings T of the closed unit square Q into euclidean 3-space E_3 , Lebesgue area is not lower semi-continuous with respect to almost everywhere convergence nor even, as C. J. Neugebauer has shown, [3], with respect to pointwise convergence.

It thus appears that a theory of parametric surface area must be restricted to surfaces which cannot deviate too far from the ones given by continuous mappings. In this paper, we develop the beginnings of a theory for a class of surfaces which we call linearly continuous.

2. Let f be a real function defined on Q and, for every u, let f_u be defined by $f_u(v) = f(u, v)$ and let f_v be defined similarly. Then f is linearly continuous if f_u is continuous for almost all u and f_v is continuous for almost all v. A mapping T: x = x(u, v), y = y(u, v), z = z(u, v) of Q into E_3 is linearly continuous if x, y, z are linearly continuous.

A sequence $\{f_n\}$ of functions converges linearly to a function f if $(f_n)_u$ converges uniformly to f_u for almost all u, and $(f_n)_v$ converges uniformly to f_v for almost all v. A sequence $T_n: x = x_n(u, v), y = y_n(u, v), z = z_n(u, v)$ converges linearly to a mapping T: x = x(u, v), y = y(u, v), z = z(u, v) if $\{x_n\}, \{y_n\}, \{z_n\}$ converge linearly to x, y, z, respectively. Let P be the set of quasi linear mappings from Q into E_3 . For $p, q \in Q$ let

$$d(p, q) = \inf[k: \text{there are sets } A_k \subset I, B_k \subset J,$$

 $m(A_k) > 1 - k, m(B_k) > 1 - k, \text{ and } | p(u, v) - q(u, v)| < k$
on $(A_k \times J) \cup (I \times B_k)$.

It is easy to verify that P is a metric space and that $\{p_n\}$ converges to p in this space if and only if it converges linearly. Let E be the elementary area functional on P. It is not hard to prove

¹ Research supported by National Science Foundation Grant No. NSF G-5867.

THEOREM 1. E is lower semi-continuous on P. In other words, if $\{p_n\}$ converges linearly to p then $\liminf E(p_n) \ge E(p)$.

By the Fréchet extension theorem, E is extended to a lower semicontinuous functional Φ on the completion \mathcal{L} of P.

Theorem 2. The completion $\mathfrak L$ of P is the space of linearly continuous mappings with the metric corresponding (as above) to linear convergence.

3. It is obvious that for every continuous mapping T, $A(T) \ge \Phi(T)$ where A(T) is the Lebesgue area. The inverse inequality holds so that the functional Φ constitutes a legitimate extension of Lebesgue area to substantially wider class of mappings than the continuous ones. We outline the proof.

For a continuous T: x = x(u, v), y = y(u, v), z = z(u, v), the lower area V(T) is defined as follows:

Let $T_1: y = y(u, v)$, z = z(u, v), $T_2: x = x(u, v)$, z = z(u, v), and $T_3: x = x(u, v)$, y = y(u, v) be the associated flat mappings. For every simple polygonal region P in Q^0 , let

$$v_1(P) = \int |O(\xi, T_1P^*)|,$$

where the integration is over the yz plane, and $O(\xi, T_1P^*)$ is the topological index of T_1P^* at ξ (A^0 and A^* are the interior and boundary, respectively, of a set A). Define $v_2(P)$ and $v_3(P)$, similarly, and let

$$v(P) = [v_1(P)^2 + v_2(P)^2 + v_3(P)^2]^{1/2}.$$

Let $\pi = (P_1, \dots, P_n)$ be a finite set of pair-wise disjoint simple polygonal regions in Q^0 and

$$v(\pi) = \sum_{i=1}^n v(P_k).$$

Finally, let

$$V(T) = \sup [v(\pi) : \pi].$$

Cesari has shown (e.g. [4]) that A(T) = V(T) for every continuous T.

The distance between 2 sets A and B is defined by

$$d(A, B) = \sup[d(x, B) \colon x \in A] + \sup[d(y, A) \colon y \in B].$$

With this metric, the set α of simple polygonal regions is a separable metric space. Let $\beta \subset \alpha$ be dense in α and

$$V_{\beta} = \sup [v(\pi) \colon \pi \subset \beta].$$

LEMMA 1. $V_{\beta}(T) = V(T)$.

Now, let $\{T_n\}$ be a sequence of continuous mappings which converges linearly to a continuous mapping T. Let γ be the set of simple polygonal regions whose boundaries consist of line segments parallel to the coordinate axes for which T and T_n , $n=1, 2, \cdots$ are continuous and on each of which $\{T_n\}$ converges uniformly to T. For each $\pi \subset \gamma$, $\lim \inf v(\pi, T_n) \ge v(\pi, T)$. Since γ is dense in α , it follows that $\lim \inf V(T_n) \ge V(T)$. This proves

THEOREM 3. A(T) is lower semi-continuous with respect to linear convergence on the set of continuous mappings.

COROLLARY 1. $A(T) = \Phi(T)$ for every continuous T.

PROOF. For every sequence $\{p_n\}$ of quasi-linear mappings converging linearly to T, lim inf $E(P_n) \ge A(T)$. Choose $\{p_n\}$ so that $\lim E(p_n) = \Phi(T)$. Then $A(T) \le \Phi(T)$,

4. A set S will be called negligible if $S \subset Z_1 \times Z_2$ where Z_1 and Z_2 have linear measure zero. Kolmogoroff's principle holds in the following form.

THEOREM 4. If T_1 and T_2 are linearly continuous mappings from Q into E_3 and if for every pair of points ξ , η not belonging to a negligible set

$$|T_1\xi-T_1\eta|\leq |T_2\xi-T_2\eta|,$$

then $\Phi(T_1) \leq \Phi(T_2)$.

5. A real function f on Q is BVC if for almost all u and almost all v, f_u and f_v are equivalent to functions of bounded variation and the corresponding variation functions are summable. f is ACE if for almost all u and almost all v, f_u and f_v are equivalent to absolutely continuous functions.

For functions which are BVT and ACT it is a simple known fact that the integral means commute with the partial derivatives. This also holds almost everywhere for functions which are BVC and ACE. Using this fact and the fact, [5], that if f is BVC and linearly continuous then the integral means of f converge linearly to f, the proof of the following generalization of a theorem of Morrey, [4], may be obtained in somewhat standard fashion. The generalization is in two directions. Instead of holding only for conjugate Lebesgue spaces, the theorem holds for conjugate Köthe spaces, [6; 7], and the theorem

holds for linearly continuous mappings rather than just for continuous ones.

THEOREM 5. If the functions x, y, z of a linearly continuous T are BVC and ACE and if the pairs of partial derivatives (x_u, y_v) , (x_v, y_u) , (x_u, z_v) , (x_v, z_u) , (y_u, z_v) , (y_v, z_u) belong to conjugate Köthe spaces, the area $\Phi(T)$ is given by the formula

$$\Phi(T) = \int J \ du dv$$

where $J = [J_1^2 + J_2^2 + J_3^2]^{1/2}$ and J_1 , J_2 , J_3 are the jacobians of T_1 , T_2 , T_3 , respectively.

6. We define an equivalence relation for linearly continuous mappings. T is equivalent to $T'(T \approx T')$ if there are sequences $\{p_n\}$ and $\{q_n\}$ of quasi linear mappings such that, for every n, $p_n \approx q_n$ in the Lebesgue sense and $\{p_n\}$ converges linearly to T, $\{q_n\}$ converges linearly to T'.

The following simple facts hold:

- (a) The relation " \approx " has the properties of an equivalence relation.
- (b) If T and T' are continuous and Fréchet equivalent then $T \approx T'$.
- (c) If $T \approx T'$ then $\Phi(T) = \Phi(T')$.

We refer to an equivalence class as a surface and to its elements as representations.

D mappings, the Dirichlet integral, and almost conformal mappings are defined as for the continuous case, [4], with BVT and ACT replaced by BVC and ACE.

We say that a mapping T is simple if there is a negligible set S such that $\xi \in Q - S$, $\eta \in Q - S$, $\xi \neq \eta$ implies $T(\xi) \neq T(\eta)$.

The following holds:

THEOREM 6. If T' is a linearly continuous simple mapping and $\Phi(T') < \infty$, the surface given by T' has a representation T, with jacobian J, such that

$$\Phi(T') = \Phi(T) = \int J \ du dv.$$

COROLLARY. Every linearly continuous nonparametric surface of finite area has a parametric representation T, with jacobian J, such that

$$\Phi(T) = \int J \ du dv$$

BIBLIOGRAPHY

- 1. L. Cesari, Sulle funzioni a variazione limitata, Ann. Scuola Norm. Sup. Pisa vol. 5 (1936) pp. 299-313.
- 2. C. Goffman, Lower semi-continuity and area functionals. I, The non-parametric case, Rend. Circ. Mat. Palermo vol. 2 (1954) pp. 203-235.
- 3. C. J. Neugebauer, Lebesgue area and pointwise convergence, Abstract 554-13, Notices Amer. Math. Soc. vol. 6 (1959) p. 80.
 - 4. L. Cesari, Surface area, Princeton, University Press, 1956.
- 5. C. Goffman, Area of linearly continuous functions, Acta Math. vol. 103 (1960) pp. 269-290.
 - 6. J. Dieudonné, Sur les espaces de Köthe, J. Anal. Math. vol. 1 (1951) pp. 81-115.
- 7. C. Goffman, Completeness in topological vector lattices, Amer. Math. Monthly vol. 66 (1959) pp. 87-92.

PURDUE UNIVERSITY