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1. A general theory of surface area, [ l ; 2 ] , exists for the non-
parametric case. Thus, area is defined for all measurable ƒ on the unit 
square Q = IXJ. The area functional is lower semi-continuous with 
respect to almost everywhere convergence and agrees with the 
Lebesgue area for continuous ƒ. On the other hand, for continuous 
parametric mappings T of the closed unit square Q into euclidean 
3-space E$} Lebesgue area is not lower semi-continuous with respect 
to almost everywhere convergence nor even, as C. J. Neugebauer has 
shown, [3], with respect to pointwise convergence. 

I t thus appears that a theory of parametric surface area must be 
restricted to surfaces which cannot deviate too far from the ones given 
by continuous mappings. In this paper, we develop the beginnings of 
a theory for a class of surfaces which we call linearly continuous. 

2. Let ƒ be a real function defined on Q and, for every u> let fu be 
defined by fu(v) =f(u, v) and let ƒ„ be defined similarly. Then ƒ is 
linearly continuous if fu is continuous for almost all u and fv is con­
tinuous for almost all v. A mapping T:x = x(u, v), y — y{u, v), 
z = z(u, v) of Q into Ez is linearly continuous if x, y, z are linearly con­
tinuous. 

A sequence {fn} of functions converges linearly to a function ƒ if 
(fn)u converges uniformly to fu for almost all u, and (fn)v converges 
uniformly t o / , for almost all v. A sequence Tn: x = xn(u, v),y = yn(u, v), 
z — Zniu, v) converges linearly to a mapping T: x — x{u, v), y~y{u, v), 
z — z{u,v)\l {xn}, {yn}> {zn} converge linearly to x, y, z, respectively. 

Let P be the set of quasi linear mappings from Q into Ez. For 
P,qeQ let 

d(p, q) = inf[£: there are sets Ak C I, Bk C / , 

m(Ak) > 1 — k, m(Bk) > 1 — k, and | p(u, v) — q(u, v)\ < k 

on (Ak X J) U (ƒ X Bk)l 

It is easy to verify that P is a metric space and that {pn} converges 
to p in this space if and only if it converges linearly. Let E be the 
elementary area functional on P . I t is not hard to prove 

1 Research supported by National Science Foundation Grant No. NSF G-5867. 

309 



310 CASPER GOFFMAN [May 

THEOREM 1. E is lower semi-continuous on P . In other words, if 
\pn] converges linearly to p then lim inf E(pn) ^E(p). 

By the Fréchet extension theorem, E is extended to a lower semi-
continuous functional $ on the completion <£ of P. 

THEOREM 2. The completion £ of P is the space of linearly continuous 
mappings with the metric corresponding (as above) to linear conver­
gence. 

3. I t is obvious that for every continuous mapping T, A(T) ^$(T) 
where A (T) is the Lebesgue area. The inverse inequality holds so that 
the functional <3> constitutes a legitimate extension of Lebesgue area 
to substantially wider class of mappings than the continuous ones. We 
outline the proof. 

For a continuous T:x = x(u, v), y = y(u, v), z = z(u, v), the lower 
area V(T) is defined as follows: 

Let T\:y = y(u, v), z — z(u, v), T2:x = x(u1 v), z — z(u, v), and 
r 3 : x = x(u, v), y = y(u1 v) be the associated flat mappings. For every 
simple polygonal region P in Q°, let 

vl(P) = ƒ I 0(£, 7\P*) | , 

where the integration is over the yz plane, and 0(£, 7YP*) is the topo­
logical index of TiP* a t J (A0 and A* are the interior and boundary, 
respectively, of a set A). Define v2(P) and vz(P), similarly, and let 

v(P) = hop)2 + v2(py + *3(P)2]1/2. 

Let 7T=(Pi, • • • , Pn) be a finite set of pair-wise disjoint simple 
polygonal regions in Q° and 

i=l 

Finally, let 

V(T) = sup[p(x):ir]. 

Cesari has shown (e.g. [4]) that A (T) = V(T) for every continuous 
T. 

The distance between 2 sets A and B is defined by 

d(A, B) = sup[J(x, B): x 6 A] + sup[d(y, A): y G B]. 

With this metric, the set a of simple polygonal regions is a separable 
metric space. Let ft (Zee be dense in a and 
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Vfi = sup[fl(x): T C P]* 

LEMMA 1. V0(T) = V(T). 

Now, let {Tn} be a sequence of continuous mappings which con­
verges linearly to a continuous mapping T. Let y be the set of simple 
polygonal regions whose boundaries consist of line segments parallel 
to the coordinate axes for which T and Tn, n = 1, 2, • • • are continu­
ous and on each of which {Tn} converges uniformly to T. For each 
TTCT, lim inf V(TT, Tn) !^V(T, T). Since y is dense in a, it follows that 
lim inf V(Tn) ^V(T). This proves 

THEOREM 3. A{T) is lower semi-continuous with respect to linear con­
vergence on the set of continuous mappings. 

COROLLARY 1. A(T) =<£(r) for every continuous T. 

PROOF. For every sequence {pn} of quasi-linear mappings con­
verging linearly to T, lim inf E(Pn)^A{T). Choose {pn} so that 
lim E(pn)=$(T). T h e n ^ l ( r ) ^ * ( r ) , 

4. A set S will be called negligible if SC.Z1XZ2 where Z\ and Z2 

have linear measure zero. Kolmogoroff's principle holds in the follow­
ing form. 

THEOREM 4. If T\ and T2 are linearly continuous mappings from 
Q into £3 and if for every pair of points £, rj not belonging to a negligible 
set 

| r r f - T1V\ ^ {To- ZV11, 

t h e n ^ ( r ! ) g * ( r 2 ) . 

5. A real function ƒ on Q is BVC if for almost all u and almost all 
v, fu and fv are equivalent to functions of bounded variation and the 
corresponding variation functions are summable. ƒ is ACE if for al­
most all u and almost all v, fu and ƒ„ are equivalent to absolutely con­
tinuous functions. 

For functions which are BVT and ACT it is a simple known fact 
that the integral means commute with the partial derivatives. This 
also holds almost everywhere for functions which are BVC and ACE. 
Using this fact and the fact, [5], that if ƒ is BVC and linearly con­
tinuous then the integral means of ƒ converge linearly to ƒ, the proof 
of the following generalization of a theorem of Morrey, [4], may be 
obtained in somewhat standard fashion. The generalization is in two 
directions. Instead of holding only for conjugate Lebesgue spaces, the 
theorem holds for conjugate Köthe spaces, [6; 7], and the theorem 



312 CASPER GOFFMAN [May 

holds for linearly continuous mappings rather than just for continu­
ous ones. 

THEOREM 5. If the functions x, y, z of a linearly continuous T are 
B VC and ACE and if the pairs of partial derivatives (xu, yv), (xv, yu), 
(xu, zv), (xv, Zu), (yu, Zv), (yVl zu) belong to conjugate Köthe spaces, the 
area $(T) is given by the formula 

*(T) = fJdudv 

where J= [J^+Jl+Jl]112 and J i , J2, Jz are the jacobians of T\, T2, Tdt 

respectively. 

6. We define an equivalence relation for linearly continuous map­
pings. T is equivalent to T'(T~Tf) if there are sequences {pn} and 
{qn} of quasi linear mappings such that, for every w, pn~([n in the 
Lebesgue sense and {pn) converges linearly to T, \qn] converges 
linearly to T'. 

The following simple facts hold : 
(a) The relation " « " has the properties of an equivalence relation. 
(b) If T and T' are continuous and Fréchet equivalent then T^T'. 
(c) If r « T' then * ( D = * ( r ) . 
We refer to an equivalence class as a surface and to its elements as 

representations. 
D mappings, the Dirichlet integral, and almost conformai map­

pings are defined as for the continuous case, [4], with BVT and ACT 
replaced by BVC and ACE. 

We say that a mapping T is simple if there is a negligible set 5 
such that É G G - S , rçeG-S, £3*17 implies T(£)*T(n). 

The following holds: 

THEOREM 6. If Tf is a linearly continuous simple mapping and 
$ ( r ' ) < °°, the surface given by T' has a representation T, withjacobian 
Jy such that 

* ( r ) = $ ( r ) = f J dudv. 

COROLLARY. Every linearly continuous nonparametric surface of fi­
nite area has a parametric representation T, with jacobian J, such that 

*(T) = I Jdudv 
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