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Let f (6) be a real-valued Lesbesgue integrable function defined on 
[—7T, x ] . Let { Cj} be the Fourier coefficients of /(0), i.e., 

00 

/(e) ~ 2) c*?*. 
—oo 

The matrix Tn\f] = (C8-j); s, j = 0, 1, • • • , n is the nth finite section 
of the infinite Toeplitz matrix (C,_y) associated with the function ƒ (0). 

In this note we are concerned with functions f(0) satisfying 
CONDITION A. Let f(0) be real, continuous and periodic with period 

2T. Let min ƒ(#) =ƒ(()) = m and let 0 = 0 be the only value of 0(mod 2x) 
for which this minimum is attained. 

CONDITION A (a). Let f(0) be a function satisfying condition A. 
Moreover, let jf(0) have continuous derivatives of order 2a in some 
neighborhood of 0 = 0. Finally let / ( 2 a )(0) = a2>0 be the first non-
vanishing derivative of /(0) a t 0 = 0. 

THEOREM. Let f (6) satisfy conditions A and A (a). Let 
Xr,n ( P = 1, 2, • • • , n + 1) be the eigenvalues of Tn[f] arranged in non-
decreasing order. For fixed v, as n—» oo we have 

a2 / 1 \2« / 1 V* 
(i) x"-"»+-^A-t) + ° t ) • 
where the numbers kv are the eigenvalues arranged in nondecreasing 
order of 

(2) J - Y — j 1 U - AU = 0, 0 < x = 1, 

ÎW7A boundary conditions 

(2a) ( ^ y ^ = (£)U(1) = ° ' * = 0 ,1 , • • • , « - 1. 

The case a = 1 was studied by Kac, Murdock and Szegö [3]. In [5] 
Widom also studied the case a=l and, under suitable conditions, 
obtained the next term in the asymptotic expansion of X„fW. The case 
a = 2 was studied by this author [4]. 
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The validity of this theorem was conjectured by Widom [6]. In 
fact, his conjecture is much more general. 

The author is indebted to Professors Kac and Widom for many 
fruitful discussions concerning these problems. 

In view of the Weyl-Courant characterization of \v,n (and A„) as 
solutions of a variational problem, it is sufficient to consider the case 
where ƒ(0) is an even trigonometric polynomial. (See [4] or [5] for a 
more detailed argument.) Moreover, there is no loss in generality in 
assuming m — 0. Thus ƒ(0) may be written as 

N 

(3) f(fi) = 0o(l - cos 6)« + £ A( l - cos d)k+« 

where 
2*(T2 

(3a) * - ëïï • 
Let us interpret the eigenvalue problem as a difference equation. Let 

R = N+a- l a n d let Dn be the interval [ - U / ( » + 2 ) f l + 2 î / ( * + 2 ) ] . 
Let Ax = l/(n+2) and let Xj=jAx be the lattice points in Dn. If <f>(x) 
is any function defined on Dn we denote <t>(xj) by $y. 

Let Pn be the class of piece wise-linear functions h(x) defined on Dn 

and determined by their values at Xj which satisfy 

(4) hi = 0 for j g 0 and è n + 2. 

Let 

(4.1) Tn[(l-CQ*ey] =Tr 

and let ô be the second central divided difference operator, i.e., 

(4.2) («*)y = ( — ) {*m - 2<fc + ^ x } . 

We observe that every function h(x)ÇzPn corresponds to an (n + 1) 
vector H=(hj)}j=l> 2, • • • , n + 1, and conversely. 

Furthermore, it is easy to relate the matrices rr(r^R+l) to the 
operator 8. We have 

(4.3) (rrfl), = ( - j fijyph),, = 1, 2, • • • » + 1, 

thus 
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( 1 \ " N / 1 \ a + * 

— Ax' J (Ô°h)j + E {- - Ax' J ft(***A)y. 
Let Sn be the finite difference operator which corresponds to 
(rc+2)2«rn[f] , i .e. , 

( 1 \ « N / 1 \ * 

Clearly, 5» is a consistent approximation to the differential operator 

<«•*> ^r[-(s)T 
Thus our theorem is seen to be equivalent to the theorem that the 

eigenvalues A„,n of Sn acting on functions h(x)(EPn converge to the 
eigenvalues of (4.5a) subject to the boundary conditions (2a). 

We require one more definition. Let h(x), g(x)^Pnj let H and G 
be the corresponding (n + 1) vectors, then 

(4.6) [h, g] s Ax £ hjgj = Ax(H, G). 

LEMMA 1. 

(5.1) Lim Sup A„,n = Lim Sup (n + 2)2aXy,n g 
(2a) ! 

PROOF. This follows immediately from the Weyl-Courant char­
acterization of X„,„ and the appropriate choice of "test" vectors ob­
tained from the eigenfunctions of (2). (See Weinberger [7] where 
this is carried out in detail for a similar problem.) 

Let A (a) be the divided-difference operator of order a determined 
as follows: 

(a) a = 2y: A (a) = 5? 

and 

(b) a = 2y+ 1: A (a) = Ôi-D 

where D is a first order divided-difference operator (forward or back­
ward, it doesn't matter). 

LEMMA 2. Let H be an eigenvector of Tn [f] associated with X„,» and 
let h(x)ÇzPn be the associated function with h(x) (i.e., H) normalized so 
that [h, h] = l. 

There exists a constant Mv independent of n, such that 
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(5.2) [A(a)h, A(a)h] ^ Mv. 

PROOF. We first prove that 

(5.2a) [ ( -*)"*,*] S MVi 

and (5.2) follows from a applications of summation by parts. (Note: 
— S is a positive definite operator.) 

However, (5.2a) is equivalent to 

(5.2b) Ax-2«(n + 2)2a(raH, H) g Mv. 

Now, Lemma 1 implies the existence of a constant Lv such that 

(5.3) Ax{n + 2y«(Tn\f]H, H) S U. 

However, as is well known (see [4] or [5]), if <t>(6) = £?=iM i ( /~1)ô> 
then 

(5.3a) (Tn[f]H, H) = - f *ƒ(*) | <*> |W, 

and 

(5. 3b) (raH, H) = — I (1 - cos 0)« \ <t> \ 2dd. 

We write f(0) as f (6) = (1 - c o s 6)aQ(0), where 

N 

Q(fi) = jSo + Z A( l - cos 0)*. 

Since ƒ (0) satisfies conditions -4 and A (a), there is a positive constant 
Qo such that 

o < Go ^ Q(*). 

Thus, (5.3a), (5.3b) together with (5.3) implies 

2«A*(rc + 2)2«(TaH, H) ^ 2"-Lv/Qo, 

which proves the lemma. 
Using Lemma 2 and more-or-less standard techniques in Analysis 

(see Courant, Friedrichs and Lewy [l]) one readily obtains the fol­
lowing result on the compactness of the eigenfunctions h{x)Ç.Pn. 

LEMMA 3. Let \HVtn\ be a sequence of eigenvectors of Tn[f] associated 
with X„,n. Let H= {hn(x)} be the associated sequence of functions in Pn. 
There exists a subsequence {hn>{x)} which converges uniformly on [0, 1 ] 
to a function u(x). In addition, u(x) has (a — 1) continuous derivatives 
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and has strong derivatives of order a which satisfy 

u^\Hx ^ Mv. 
«/ o 

Moreover, the divided-difference of hn'(x) of order k with k^a— 1 also 
converge uniformly to the kth derivative of u(x). Finally, in virtue of this 
last statement 

w(*>(o) = w(*)(i) = 0 , k = 0, 1, 2, • • - , a - 1. 

Our proof is almost complete. Let <t>(x) be any function in C» [0, 1 ] 
which satisfies the boundary conditions (2a). We may extend 0 as a 
Co function in Dn. There is no confusion if we also call this extended 
function <j>. Also, given such a function <£(x) we may construct a func­
tion 0 £ P n in the obvious way. 

Consider the sequence H== {hn(x)} associated with X„,n. We may. 
choose a subsequence {hn

f(x)} so that A„,n' = (w'+2)2aXy,n' converge 
to a value A?. We may now choose a subsequence (in accordance 
with Lemma 3) so that the hn"(x)-*u(x). We write n for n", and pro­
ceed. 

LEMMA 4. Let 0ECoo[O, l ] , then 

[Snhny<l>] = - ( - l H u(x)[—)4>-dx+0(l). 
a ! J o \dx/ 

PROOF. Let $ be the (n + 1) vector associated with $, then, since 
Tn\f] is hermitian, 

[S.A., *] = A*(» + 2y«(Tn[f]Hn, *) 

= Ax(rc + 2)2«(#n, Tn\f]*). 

For any point xy for which R+l<j<(n + 2) — (R + l), Taylor's theo­
rem gives us 

(5.5a) (n + 2) 2«(rn [ƒ]*), = - ( - l ) « ( - ) 0 + 0(A*2) 

Consider now any other point Xj, 1 èj^n + 1. Let a ^ r ^ ^ + 1 , then 

(w + 2)w (Tr#)y .(_iy (Ax) , («,[Q%] 
(5.5b) 
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Since <f>j = 0(Axa), the error term in (S.5b) is 0[(1/Ax)a]. Since 
hj = o(Axa~l) we find the error in the contribution to 5.4, i.e., the error 
in 

Ax(n + 2)»«Ai(<rr#)y, 

is o(l) . Thus our lemma is proven. 
However, we also have 

o r1 

(5.6) \Snhn, <t>] —» A, I u(x)<j>(x)dx 
Jo 

which, together with Lemma 4 implies that u(x) is a "weak" eigen-
function (with eigenvalue A°) of the operator (4.5a). But, upon con­
sidering the equivalent integral equation (using the Green's func­
tion) , we see that such a weak eigenf unction is indeed an eigenf unc­
tion with eigenvalue A°. 

However, Lemma 1 and the Weyl-Courant lemma, and the unique­
ness of the eigenvalues of (4.5a) show 

o <r2 

Ay = Ay. 

(2a) ! 
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