ON THE EXTREME EIGENVALUES OF TRUNCATED TOEPLITZ MATRICES

BY SEYMOUR V. PARTER

Communicated by Edwin Moise, December 23, 1960

Let $f(\theta)$ be a real-valued Lesbesgue integrable function defined on $[-\pi, \pi]$. Let $\{C_i\}$ be the Fourier coefficients of $f(\theta)$, i.e.,

$$f(\theta) \sim \sum_{-\infty}^{\infty} C_j e^{ij\theta}$$
.

The matrix $T_n[f] = (C_{s-j})$; $s, j = 0, 1, \dots, n$ is the *n*th finite section of the infinite Toeplitz matrix (C_{s-j}) associated with the function $f(\theta)$.

In this note we are concerned with functions $f(\theta)$ satisfying

CONDITION A. Let $f(\theta)$ be real, continuous and periodic with period 2π . Let min $f(\theta) = f(0) = m$ and let $\theta = 0$ be the only value of $\theta \pmod{2\pi}$ for which this minimum is attained.

Condition $A(\alpha)$. Let $f(\theta)$ be a function satisfying condition A. Moreover, let $f(\theta)$ have continuous derivatives of order 2α in some neighborhood of $\theta = 0$. Finally let $f^{(2\alpha)}(0) = \sigma^2 > 0$ be the first non-vanishing derivative of $f(\theta)$ at $\theta = 0$.

THEOREM. Let $f(\theta)$ satisfy conditions A and $A(\alpha)$. Let $\lambda_{r,n}$ $(r=1, 2, \cdots, n+1)$ be the eigenvalues of $T_n[f]$ arranged in non-decreasing order. For fixed ν , as $n \to \infty$ we have

(1)
$$\lambda_{\nu,n} = m + \frac{\sigma^2}{(2\alpha)!} \Lambda_{\nu} \left(\frac{1}{n}\right)^{2\alpha} + o\left(\frac{1}{n}\right)^{2\alpha},$$

where the numbers Λ , are the eigenvalues arranged in nondecreasing order of

(2)
$$\left[-\left(\frac{d}{dx}\right)^2 \right]^{\alpha} U - \Lambda U = 0, \qquad 0 \le x \le 1,$$

with boundary conditions

(2a)
$$\left(\frac{d}{dx}\right)^{i}U(0) = \left(\frac{d}{dx}\right)^{i}U(1) = 0, \qquad i = 0, 1, \dots, \alpha - 1.$$

The case $\alpha = 1$ was studied by Kac, Murdock and Szegö [3]. In [5] Widom also studied the case $\alpha = 1$ and, under suitable conditions, obtained the next term in the asymptotic expansion of $\lambda_{\nu,n}$. The case $\alpha = 2$ was studied by this author [4].

The validity of this theorem was conjectured by Widom [6]. In fact, his conjecture is much more general.

The author is indebted to Professors Kac and Widom for many fruitful discussions concerning these problems.

In view of the Weyl-Courant characterization of $\lambda_{r,n}$ (and Λ_r) as solutions of a variational problem, it is sufficient to consider the case where $f(\theta)$ is an even trigonometric polynomial. (See [4] or [5] for a more detailed argument.) Moreover, there is no loss in generality in assuming m=0. Thus $f(\theta)$ may be written as

(3)
$$f(\theta) = \beta_0 (1 - \cos \theta)^{\alpha} + \sum_{k=1}^{N} \beta_k (1 - \cos \theta)^{k+\alpha}$$

where

$$\beta_0 = \frac{2^{\alpha}\sigma^2}{(2\alpha)!} \cdot$$

Let us interpret the eigenvalue problem as a difference equation. Let $R = N + \alpha - 1$ and let D_n be the interval [-R/(n+2), 1 + R/(n+2)]. Let $\Delta x = 1/(n+2)$ and let $x_j = j\Delta x$ be the lattice points in D_n . If $\phi(x)$ is any function defined on D_n we denote $\phi(x_j)$ by ϕ_j .

Let P_n be the class of piecewise-linear functions h(x) defined on D_n and determined by their values at x_i which satisfy

$$(4) h_i = 0 for i \leq 0 and \geq n+2.$$

Let

$$(4.1) T_n[(1-\cos\theta)^r] = \tau_r$$

and let δ be the second central divided difference operator, i.e.,

(4.2)
$$(\delta\phi)_j = \left(\frac{1}{\Delta x}\right)^2 \{\phi_{j+1} - 2\phi_j + \phi_{j-1}\}.$$

We observe that every function $h(x) \in P_n$ corresponds to an (n+1) vector $H = (h_j)$, $j = 1, 2, \dots, n+1$, and conversely.

Furthermore, it is easy to relate the matrices $\tau_r(r \le R+1)$ to the operator δ . We have

$$(4.3) (\tau_r H)_j = \left(-\frac{1}{2}\Delta x^2\right)^r (\delta^r h)_j, = 1, 2, \cdots n+1,$$

thus

$$(4.4) \quad (T_n[f]H)_j = \beta_0 \left(-\frac{1}{2} \Delta x^2\right)^{\alpha} (\delta^{\alpha} h)_j + \sum_{k=1}^N \left(-\frac{1}{2} \Delta x^2\right)^{\alpha+k} \beta_k (\delta^{\alpha+k} h)_j.$$

Let S_n be the finite difference operator which corresponds to $(n+2)^{2\alpha}T_n[f]$, i.e.,

$$(4.5) S_n = \left(-\frac{1}{2}\right)^{\alpha} \beta_0 \delta^{\alpha} + \sum_{k=0}^{N} \left(-\frac{1}{2} \Delta x^2\right)^k \beta_k \delta^{\alpha+k}.$$

Clearly, S_n is a consistent approximation to the differential operator

$$\frac{\sigma^2}{(2\alpha)!} \left[-\left(\frac{d}{dx}\right)^2 \right]^{\alpha}.$$

Thus our theorem is seen to be equivalent to the theorem that the eigenvalues $\Lambda_{r,n}$ of S_n acting on functions $h(x) \in P_n$ converge to the eigenvalues of (4.5a) subject to the boundary conditions (2a).

We require one more definition. Let h(x), $g(x) \in P_n$, let H and G be the corresponding (n+1) vectors, then

$$[h, g] \equiv \Delta x \sum h_j g_j = \Delta x (H, G).$$

LEMMA 1.

(5.1)
$$\underset{n\to\infty}{\text{Lim Sup }} \Lambda_{r,n} = \underset{n\to\infty}{\text{Lim Sup }} (n+2)^{2\alpha} \lambda_{r,n} \leq \frac{\sigma^2}{(2\alpha)!} \Lambda_r.$$

PROOF. This follows immediately from the Weyl-Courant characterization of $\lambda_{r,n}$ and the appropriate choice of "test" vectors obtained from the eigenfunctions of (2). (See Weinberger [7] where this is carried out in detail for a similar problem.)

Let $\Delta(\alpha)$ be the divided-difference operator of order α determined as follows:

(a)
$$\alpha = 2\gamma$$
: $\Delta(\alpha) = \delta^{\gamma}$

and

(b)
$$\alpha = 2\gamma + 1$$
: $\Delta(\alpha) = \delta^{\gamma} \cdot D$

where D is a first order divided-difference operator (forward or backward, it doesn't matter).

LEMMA 2. Let H be an eigenvector of $T_n[f]$ associated with $\lambda_{r,n}$ and let $h(x) \in P_n$ be the associated function with h(x) (i.e., H) normalized so that [h, h] = 1.

There exists a constant M, independent of n, such that

$$[\Delta(\alpha)h, \Delta(\alpha)h] \leq M_{\nu}.$$

Proof. We first prove that

$$[(-\delta)^{\alpha}h, h] \leq M_{\nu},$$

and (5.2) follows from α applications of summation by parts. (Note: $-\delta$ is a positive definite operator.)

However, (5.2a) is equivalent to

$$(5.2b) \Delta x \cdot 2^{\alpha}(n+2)^{2\alpha}(\tau_{\alpha}H, H) \leq M_{r}.$$

Now, Lemma 1 implies the existence of a constant L_r such that

$$(5.3) \Delta x(n+2)^{2\alpha}(T_n[f]H, H) \leq L_r.$$

However, as is well known (see [4] or [5]), if $\phi(\theta) = \sum_{j=1}^{n+1} h_j e^{i(j-1)\theta}$, then

(5.3a)
$$(T_n[f]H, H) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) |\phi|^2 d\theta,$$

and

(5.3b)
$$(\tau_{\alpha}H, H) = \frac{1}{2\pi} \int_{-\tau}^{\tau} (1 - \cos \theta)^{\alpha} |\phi|^2 d\theta.$$

We write $f(\theta)$ as $f(\theta) = (1 - \cos \theta)^{\alpha} Q(\theta)$, where

$$Q(\theta) = \beta_0 + \sum_{k=1}^N \beta_k (1 - \cos \theta)^k.$$

Since $f(\theta)$ satisfies conditions A and $A(\alpha)$, there is a positive constant Q_0 such that

$$0 < Q_0 \leq Q(\theta).$$

Thus, (5.3a), (5.3b) together with (5.3) implies

$$2^{\alpha}\Delta x(n+2)^{2\alpha}(\tau_{\alpha}H,H) \leq 2^{\alpha} \cdot L_{\nu}/Q_{0},$$

which proves the lemma.

Using Lemma 2 and more-or-less standard techniques in Analysis (see Courant, Friedrichs and Lewy [1]) one readily obtains the following result on the compactness of the eigenfunctions $h(x) \in P_n$.

LEMMA 3. Let $\{H_{r,n}\}$ be a sequence of eigenvectors of $T_n[f]$ associated with $\lambda_{r,n}$. Let $H = \{h_n(x)\}$ be the associated sequence of functions in P_n . There exists a subsequence $\{h_{n'}(x)\}$ which converges uniformly on [0,1] to a function u(x). In addition, u(x) has $(\alpha-1)$ continuous derivatives

and has strong derivatives of order α which satisfy

$$\int_0^1 |u^{(\alpha)}|^2 dx \leq M_{\nu}.$$

Moreover, the divided-difference of $h_{n'}(x)$ of order k with $k \leq \alpha - 1$ also converge uniformly to the kth derivative of u(x). Finally, in virtue of this last statement

$$u^{(k)}(0) = u^{(k)}(1) = 0,$$
 $k = 0, 1, 2, \dots, \alpha - 1.$

Our proof is almost complete. Let $\phi(x)$ be any function in $C_{\infty}[0, 1]$ which satisfies the boundary conditions (2a). We may extend ϕ as a C_{∞} function in D_n . There is no confusion if we also call this extended function ϕ . Also, given such a function $\phi(x)$ we may construct a function $\hat{\phi} \in P_n$ in the obvious way.

Consider the sequence $H = \{h_n(x)\}$ associated with $\lambda_{r,n}$. We may choose a subsequence $\{h_{n'}(x)\}$ so that $\Lambda_{r,n'} = (n'+2)^{2\alpha}\lambda_{r,n'}$ converge to a value Λ^0_r . We may now choose a subsequence (in accordance with Lemma 3) so that the $h_{n''}(x) \rightarrow u(x)$. We write n for n'', and proceed.

LEMMA 4. Let $\phi \in C_{\infty}[0, 1]$, then

$$[S_n h_n, \hat{\phi}] = \frac{\sigma^2}{\alpha!} (-1)^{\alpha} \int_0^1 u(x) \left(\frac{d}{dx}\right)^{2\alpha} \phi \cdot dx + o(1).$$

PROOF. Let Φ be the (n+1) vector associated with $\hat{\phi}$, then, since $T_n[f]$ is hermitian,

$$[S_n h_n, \phi] = \Delta x (n+2)^{2\alpha} (T_n[f]H_n, \Phi)$$
$$= \Delta x (n+2)^{2\alpha} (H_n, T_n[f]\Phi).$$

For any point x_j for which R+1 < j < (n+2)-(R+1), Taylor's theorem gives us

$$(5.5a) \qquad (n+2)^{2\alpha} (T_n[f]\Phi)_j = \frac{\sigma^2}{\alpha!} (-1)^{\alpha} \left(\frac{d}{dx}\right)^{2\alpha} \phi + O(\Delta x^2)$$

Consider now any other point x_j , $1 \le j \le n+1$. Let $\alpha \le r \le R+1$, then

(5.5b)
$$(n+2)^{2\alpha}(\tau_r \Phi)_j = \left(-\frac{1}{2}\right)^r (\Delta x)^{2(r-\alpha)} \left[\left(\frac{d}{dx}\right)^{2r} \phi\right]_j + O\left[\phi_j \left(\frac{1}{\Delta x}\right)^{2\alpha}\right].$$

Since $\phi_j = O(\Delta x^{\alpha})$, the error term in (5.5b) is $O[(1/\Delta x)^{\alpha}]$. Since $h_j = o(\Delta x^{\alpha-1})$ we find the error in the contribution to 5.4, i.e., the error in

$$\Delta x(n+2)^{2\alpha}h_i(\sigma_r\Phi)_i$$

is o(1). Thus our lemma is proven.

However, we also have

$$[S_n h_n, \phi] \to \Lambda_{\nu}^0 \int_0^1 u(x) \phi(x) dx$$

which, together with Lemma 4 implies that u(x) is a "weak" eigenfunction (with eigenvalue Λ^0_{ν}) of the operator (4.5a). But, upon considering the equivalent integral equation (using the Green's function), we see that such a weak eigenfunction is indeed an eigenfunction with eigenvalue Λ^0_{ν} .

However, Lemma 1 and the Weyl-Courant lemma, and the uniqueness of the eigenvalues of (4.5a) show

$$\Lambda_{\nu}^{0} = \frac{\sigma^{2}}{(2\alpha)!} \Lambda_{\nu}.$$

REFERENCES

- 1. R. Courant, K. O. Friedrichs and H. Lewy, Über die partiellen Differenzgleichungen der mathematisch Physik, Math. Ann. vol. 100 (1928) pp. 32-74.
- 2. U. Grenander and G. Szegö, Toeplitz forms and their applications, Berkeley, University of California Press, 1958.
- 3. M. Kac, W. L. Murdock, and G. Szegö, On the eigenvalues of certain Hermitian forms, J. Rational Mech. Anal. vol. 2 (1953) pp. 767-800.
- 4. S. V. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations, Trans. Amer. Math. Soc., to appear.
- 5. H. Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc. vol. 88 (1958) pp. 491-522.
- 6. ——, Stable processes and integral equations, Trans. Amer. Math. Soc., to appear.
- 7. H. F. Weinberger, Lower bounds for higher eigenvalues by finite difference methods, Pacific J. Math. vol. 8 (1958) pp. 339-368.

CORNELL UNIVERSITY