## ON A HOMOMORPHISM BETWEEN GENERALIZED GROUP ALGEBRAS

## BY ALVIN HAUSNER

Communicated by Edwin Hewitt, September 26, 1960

If  $G = \{a, b, \dots\}$  is a locally compact abelian group and X  $= \{x, y, \dots\}$  a complex commutative Banach algebra, we denote by B(G, X) the generalized group algebra in the sense of [1; 2]. An X-valued function g defined over G is in B(G, X) if g is strongly measurable and Bochner integrable with respect to Haar measure over G. We define  $||g||_{B(G,X)} = \int_G |g(a)|_X da$  and, with convolution as multiplication, B(G, X) is a complex commutative B-algebra. In [1, p. 1606], it is shown that the space  $\mathfrak{M}(B)$  of regular maximal ideals in B(G, X) is homeomorphic with  $\widehat{G} \times \mathfrak{M}(X)$ . Here,  $\widehat{G} = \{\widehat{a}, \widehat{b}, \cdots \}$ is the character group of G and  $\mathfrak{M}(X)$  denotes the space of regular maximal ideals in X, both in their usual topologies. If  $\phi_M$  is the canonical homomorphism of X onto the complex numbers associated with an  $M \in \mathfrak{M}(X)$ , then a function  $g \in B(G, X)$  is represented on  $\mathfrak{M}(B)$ by the function  $\hat{g}(\hat{a}, M) = \int_{G} \phi_{M} g(a)(a, \hat{a}) da$ , [1, p. 1604]. If  $f \in L(G)$ ,  $x \in X$ , then fx shall denote the function (fx)(a) = f(a)x almost everywhere over G. Clearly  $fx \in B(G, X)$ . Further, finite linear combinations of functions of the type fx with  $f \in L(G)$ ,  $x \in X$  are dense in B(G, X).

In this paper we propose to characterize the homomorphisms T from B(G, X) into B(G, X') which are such that T keeps L(G) "pointwise invariant." More precise statements will be found in the theorems below.

We begin with

THEOREM 1. Let G be a group such that  $\hat{G}$  is connected and let X and X' be commutative B-algebras with identities e, e' respectively. Suppose  $\mathfrak{M}(X)$  is totally disconnected and X' is semi-simple. Let T:  $B(G, X) \to B(G, X')$  be a continuous homomorphism such that T(fe) = fe' for any  $f \in L(G)$ . Then there exists a continuous homomorphism  $\sigma: X \to X'$  such that T(G) = T(G) = T(G) for any T(G) = T(G) = T(G).

PROOF.<sup>1</sup> If  $g' \in B(G, X')$  and g' is represented on its space of maximal ideals  $\widehat{G} \times \mathfrak{M}(X')$  as  $\widehat{f} \cdot \phi'$  where  $f \in L(G)$  and  $\phi'$  is a function defined on  $\mathfrak{M}(X')$ , then g' = fx' for some  $x' \in X'$ . (Here,  $\widehat{f}(\widehat{a}) = \int_{G} f(\widehat{a})(a, \widehat{a})da$ .) For, consider the function F from G to X' given

<sup>&</sup>lt;sup>1</sup> The author wishes to gratefully thank the referee of [1] for suggesting the following proof.

by  $F(a) = \int_G g'(a)(a, a)da$ . If  $M' \in \mathfrak{M}(X')$ , then  $\phi_{M'}(F(a)) = \hat{f}(a)\phi'(M')$ . If  $f \neq 0$ , there exists an a such that  $\hat{f}(a) \neq 0$ . Let  $x' = F(a)/\hat{f}(a)$  so that  $\phi_{M'}(x') = \phi'(M')$ . We see that g' and fx' are represented by the same function on  $\hat{G} \times \mathfrak{M}(X')$ . Now, since X' is semi-simple, B(G, X') is semi-simple [1, p. 1609] and thus g' = fx'.

For  $\hat{a} \in \hat{G}$ ,  $M' \in \mathfrak{M}(X')$ , we have in

$$[Tg]^{\hat{}}(\hat{a}, M') = \int_{G} \phi_{M'}(Tg)(a)(a, \hat{a})da$$

a continuous multiplicative linear functional on B(G,X). This means that  $[Tg]^{\smallfrown}(\hat{a},M')=\hat{g}(\tau(\hat{a}),\sigma^*M')$  for some  $\tau(\hat{a})\in \hat{G},\sigma^*M'\in \mathfrak{M}(X)$ . T thus induces a map  $T^*\colon \hat{G}\times \mathfrak{M}(X')\to \hat{G}\times \mathfrak{M}(X)$  given by  $T^*(\hat{a},M')=(\tau(\hat{a}),\sigma^*M')$ . Since  $\hat{G}$  is connected and  $T^*$  is continuous,  $T^*(\hat{G}\times \{M'\})$  is a connected set in  $\hat{G}\times \mathfrak{M}(X)$  for each  $M'\in \mathfrak{M}(X')$ . Since  $\mathfrak{M}(X)$  is totally disconnected,  $T^*(\hat{G}\times \{M'\})\subset \hat{G}\times \{\sigma^*M'\}$ . This is true because the connected components of  $\hat{G}\times \mathfrak{M}(X)$  are precisely of the form  $\hat{G}\times \{M\}$  with  $M\in \mathfrak{M}(X)$ . Since  $T(fe)=fe',f\in L(G)$ , we conclude that  $\tau(\hat{a})=\hat{a}$  and  $T^*$  is the product of the identity map on  $\hat{G}$  and a map  $\sigma^*\colon \mathfrak{M}(X')\to \mathfrak{M}(X)$ .

Consider  $fx \in B(G, X)$ ,  $f \in L(G)$ . It gets represented as a product function on  $\hat{G} \times \mathfrak{M}(X)$ . From the nature of  $T^*$  in the preceding paragraph, T(fx) gets represented as a product function on  $\hat{G} \times \mathfrak{M}(X')$  whose first factor is  $\hat{f}(\hat{a})$ . In view of the second paragraph of this proof, there exists  $\sigma(x) \in X'$  such that  $T(fx) = \sigma(x)f$ . The map  $\sigma: X \to X'$  is a continuous homomorphism as is easy to verify. As already remarked, finite linear combinations of functions fx are dense in B(G, X) and since T is continuous, the theorem is proved.

In our next theorem G will be taken compact and we require the following

LEMMA. Suppose G is a compact abelian group with Haar measure normalized to 1, and X is a complex commutative B-algebra with identity e with no restrictions on  $\mathfrak{M}(X)$ . Let  $\phi$  be a continuous homomorphism from B(G, X) to L(G) which is such that  $\phi(fe) = f$  for all  $f \in L(G)$ . Then there exists an  $M \in \mathfrak{M}(X)$  such that  $(\phi g)(a) = \phi_M g(a)$  a.e. for any  $g \in B(G, X)$ .

PROOF. Since G is compact, the constant X-valued functions are in B(G, X) and thus X can be considered to be a subset of B(G, X). In other words, if  $x \in X$ , we denote the function f(a) = x (for almost all  $a \in G$ ) simply by x itself. If  $x, y \in X \subset B(G, X)$ , then  $x * y = \int_G xy da = xy$  since m(G) = 1. (Here, xy denotes the ordinary product of x and y in the B-algebra X.) Now  $\phi$  is not identically zero on X because

 $\phi(1 \cdot e) = 1$ . Further, for any  $x \in X$ ,  $\phi(x * e) = \phi(xe) = \phi(x) * \phi(e) = \phi(x) * 1 = \int_G \phi(x)(a) da = a$  constant a.e. over G. Hence each  $x \in X$  is mapped by  $\phi$  onto a constant function in L(G).  $\phi$  is additive on X and furthermore:  $\phi(x * y) = \phi(xy) = \phi(x) * \phi(y) = \phi(x)\phi(y)$  for any  $x, y \in X$ . Consequently  $\phi$  is a continuous nonzero multiplicative linear functional on the B-algebra X and, as such, there exists an  $M \in \mathfrak{M}(X)$  with  $\phi(x) = \phi_M(x)$  for  $x \in X$ .

Choose an arbitrary  $f \in L(G)$ ,  $x \in X$  and  $\hat{a} \in \hat{G}$ . We have:  $\phi(fx*(\cdot,\hat{a})^{-1}e) = \phi(\hat{f}(\hat{a})(\cdot,\hat{a})^{-1}x) = \hat{f}(\hat{a})\phi((\cdot,\hat{a})^{-1}x) = \phi(fx)*\phi((\cdot,\hat{a})^{-1}e) = \phi(fx)*(\cdot,\hat{a})^{-1}=(\cdot,\hat{a})^{-1}[\phi(fx)]^{\hat{a}}$ . Hence, for each  $\hat{a} \in \hat{G}$ ,  $[\phi(fx)]^{\hat{a}}(\hat{a}) = (a,\hat{a})\hat{f}(\hat{a})\phi((a,\hat{a})^{-1}x)$  for all  $a \in G$  except possibly over a set of measure 0. We can therefore choose an  $a_0$  (depending on  $\hat{a}$ ) for which the last equation is true and substituting we find:  $[\phi(fx)]^{\hat{a}}(\hat{a}) = (a_0,\hat{a})\hat{f}(\hat{a})\phi((a_0,\hat{a})^{-1}x) = (a_0,\hat{a})(a_0,\hat{a})^{-1}\hat{f}(\hat{a})\phi(x) = \hat{f}(\hat{a})\phi_M(x)$ . This implies  $\phi(fx) = \phi_M(x)f$  for all  $f \in L(G)$ ,  $x \in X$ .

Taking finite linear combinations of functions of the type fx with  $f \in L(G)$  and  $x \in X$ , we can find a sequence  $\{f_n\}$  such that  $f_n \to g$  for any  $g \in B(G, X)$  with  $\phi(f_n) = \phi_M(f_n)$ . Hence  $\phi(g) = \phi_M(g)$  since  $\phi$  is continuous and the lemma is established.

THEOREM 2. Let G and X be as in the lemma and let X' denote a semi-simple B-algebra with identity e'. Suppose  $T: B(G, X) \rightarrow B(G, X')$  is a continuous homomorphism such that T(fe) = fe' for any  $f \in L(G)$ . Then there exists a continuous homomorphism  $\sigma: X \rightarrow X'$  such that  $(Tg)(a) = \sigma g(a)$  for any  $g \in B(G, X)$ .

PROOF. Let  $\{W\}$  be the set of neighborhoods of the identity  $0 \in G$  and let  $\{j_W\}$  be an approximate identity in L(G). Then, if  $f \in L(G)$ ,  $x \in X$ , we have  $T(j_W * fx) = T(j_W x) * fe' \to T(fx)$  as  $W \to 0$ . Taking Fourier transforms we find  $[T(j_W x)]^{\smallfrown}(fe')^{\smallfrown} \to [T(fx)]^{\smallfrown}$  so that  $[T(j_W x)]^{\smallfrown}(\hat{a})$  converges as  $W \to 0$  for each  $\hat{a} \in \hat{G}$ . Call this limit  $\sigma_{\hat{a}}(x)$ . It is clear that  $\sigma_{\hat{a}}(x)$  is independent of the approximate identity  $\{j_W\}$  and the function f defining it. We have  $[T(fx)]^{\smallfrown}(\hat{a}) = \sigma_{\hat{a}}(x)\hat{f}(\hat{a})e'$ .

Let  $M' \in \mathfrak{M}(X')$  and consider the map  $\phi_{M'} \circ T$  from B(G, X) to L(G). If  $fe \in B(G, X)$  with  $f \in L(G)$ , then  $(\phi_{M'} \circ T)(fe) = \phi_{M'}(fe') = f$ . The map  $\phi_{M'} \circ T$  is continuous and the lemma applies to it. Therefore, there is an  $M \in \mathfrak{M}(X)$ , depending on  $M' \in \mathfrak{M}(X')$ , such that  $\phi_{M'} \circ T = \phi_{M}$ . Now:  $\phi_{M'} [T(fx)] \cap (\hat{a}) = [(\phi_{M'} \circ T)(fx)] \cap (\hat{a}) = \hat{f}(\hat{a})\phi_{M}(x) = \hat{f}(\hat{a})\phi_{M'}(\sigma_{\delta}(x))$ . This means  $\phi_{M'}(\sigma_{\delta}(x)) = \phi_{M}(x)$  for each  $M' \in \mathfrak{M}(X')$  and each  $\hat{a} \in \hat{G}$ ,  $x \in X$ .

We show that  $\sigma_{\delta}(x)$  is actually independent of  $\delta$ . Suppose  $\sigma_{\delta_1}(x) = y_1$ ,  $\sigma_{\delta_2}(x) = y_2$  and  $\delta_1 \neq \delta_2$ . For any  $M' \in \mathfrak{M}(X')$  we have  $\phi_{M'}(y_1) = \phi_{M'}(y_2) = \phi_M(x)$ . Since X' is semi-simple, we must have  $y_1 = y_2$  and

so  $\sigma_{\delta}(x)$  is independent of  $\delta$ . Write  $\sigma_{\delta}(x) = \sigma(x)$ .  $\sigma$  is a continuous homomorphism from X to X'. We have, consequently, shown that  $[T(fx)]^{\hat{}}(\delta) = \sigma(x)\hat{f}(\delta)$  and this means  $T(fx) = \sigma(x)f$  for all  $f \in L(G)$ ,  $x \in X$ , because B(G, X') is semi-simple if X' is semi-simple. Continuing in a manner like that at the end of the lemma or the end of Theorem 1, we find that  $(Tg)(a) = \sigma g(a)$  for all  $g \in B(G, X)$ . This completes the proof.

We remark that, conversely, if  $\sigma: X \to X'$  is a continuous homomorphism, then the map  $(Tg)(a) = \sigma g(a)$  from B(G, X) to B(G, X') is a continuous homomorphism with no restrictions on G,  $\widehat{G}$ , X or X'. The proof is easy and is omitted.

THEOREM 3. In either Theorem 1 or 2, if T is an isomorphism from B(G, X) onto B(G, X'), then  $\sigma$  is an isomorphism from X onto X'.

PROOF.  $\sigma$  is one-one for if  $x_1 \neq x_2$ ,  $x_1$ ,  $x_2 \in X$ , then  $fx_1 \neq fx_2$  where  $f \in L(G)$ ,  $f \neq 0$ . Since T is one-one,  $T(fx_1) = \sigma(x_1)f \neq T(fx_2) = \sigma(x_2)f$  so that  $\sigma(x_1) \neq \sigma(x_2)$ .  $\sigma$  is onto X', for choose any  $x' \in X'$ . Find an  $f \in L(G)$  such that  $\hat{f}(\hat{0}) \neq 0$ . Since T is onto, there is a  $g \in B(G, X)$  such that  $\sigma g = fx'$ . Taking Fourier transforms:  $[\sigma g]^{\widehat{}}(\hat{a}) = \sigma \hat{g}(\hat{a}) = \hat{f}(\hat{a})x'$ . Setting  $\hat{a} = \hat{0}$ , we find  $\sigma \hat{g}(\hat{0}) = \hat{f}(\hat{0})x'$  so that  $\sigma(\hat{g}(\hat{0})/\hat{f}(\hat{0})) = x'$ . Hence, there is an  $x = \hat{g}(\hat{0})/\hat{f}(\hat{0}) \in X$  such that  $\sigma(x) = x'$ .

## REFERENCES

- 1. Alvin Hausner, The tauberian theorem for group algebras of vector-valued functions, Pacific J. Math. vol. 7 (1957) pp. 1603-1610.
- 2. ——, On generalized group algebras, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 1-10.

THE CITY COLLEGE OF NEW YORK