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If G= {a, b, ---} is a locally compact abelian group and X
={x, 9, -+ -} a complex commutative Banach algebra, we denote
by B(G, X) the generalized group algebra in the sense of [1;2]. An
X-valued function g defined over G is in B(G, X) if g is strongly
measurable and Bochner integrable with respect to Haar measure
over G. We define ||gHB(g,x) =fa|g(a)|xda and, with convolution as
multiplication, B(G, X) is a complex commutative B-algebra. In
[1, p. 1606], it is shown that the space M (B) of regular maximal ideals
in B(G, X) is homeomorphic with G X9 (X). Here, G={4, §, - - - }
is the character group of G and M(X) denotes the space of regular
maximal ideals in X, both in their usual topologies. If ¢ is the canon-
ical homomorphism of X onto the complex numbers associated with
an MCIM(X), then a function g&B(G, X) is represented on PM(B)
by the function 2(d8, M) = [spug(a)(a, d)da, [1, p. 1604]. If fEL(G),
xE X, then fx shall denote the function (fx)(a) =f(a)x almost every-
where over G. Clearly fx©B(G, X). Further, finite linear combina-
tions of functions of the type fx with fEL(G), x&€X are dense in
B(G, X).

In this paper we propose to characterize the homomorphisms T
from B(G, X) into B(G, X’) which are such that T keeps L(G) “point-
wise invariant.” More precise statements will be found in the theo-
rems below.

We begin with

THEOREM 1. Let G be a group such that G is connected and let X and
X' be commutative B-algebras with identities e, € respectively. Suppose
M(X) s totally disconnected and X' is semi-simple. Let T: B(G, X)
—B(G, X') be a continuous homomorphism such that T(fe)=fe' for
any fEL(G). Then there exists a continuous homomorphism o: X—X'
such that (Tg)(a) =og(a) for any gEB(G, X).

Proor.! If g €B(G, X’) and g’ is represented on its space of maxi-
mal ideals GXI(X’) as f-¢’ where fFEL(G) and ¢’ is a function de-
fined on M(X’), then g’ = fx’ for some «' € X’. (Here, f(d)
= [¢f(8)(a, 8)da.) For, consider the function F from G to X’ given

1 The author wishes to gratefully thank the referee of [1] for suggesting the follow-
ing proof.
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by F(a) = [eg' (a) (a, d)da. If M'EM(X’), then ¢ (F(8)) =7 (8)¢’ (M').
If 0, there exists an 4 such that 7(4) #0. Let x’ = F(4)/f(d) so that
ou (x') =¢'(M’'). We see that g’ and fx’ are represented by the same
function on GXM(X’). Now, since X’ is semi-simple, B(G, X’) is
semi-simple [1, p. 1609] and thus g’ =fx’.

For 4€G, M'EM(X'), we have in

[Tg]~ (2, M) = f 4 (TO(@)(0, 8)da

a continuous multiplicative linear functional on B(G, X). This means
that [Tg]™ (4, M) = §(r(8), o*M’) for some 7(8) EG, o* M' EM(X).
T thus induces a map T*: G XM(X") =G XM(X) given by T*(d, M’)
= (r(8), o*M’). Since G is connected and T* is continuous,
T*(GX {M’}) is a connected set in GXM(X) for each M'EM(X").
Since M(X) is totally disconnected, T*(GX{M'})CGX {a*M'}.
This is true because the connected components of G X9 (X) are pre-
cisely of the form G X { M} with MEIN(X). Since T(fe) =fe', fEL(G),
we conclude that 7(8) =4 and T* is the product of the identity map
on G and a map o*: M(X')->M(X).

Consider fx€B(G, X), f&L(G). It gets represented as a product
function on G XMM(X). From the nature of T* in the preceding para-
graph, T(fx) gets represented as a product function on G XM (X")
whose first factor is f(4). In view of the second paragraph of this proof,
there exists o(x) €X'’ such that T'(fx) =0 (x)f. The mapo: X—X'isa
continuous homomorphism as is easy to verify. As already remarked,
finite linear combinations of functions fx are dense in B(G, X) and
since T is continuous, the theorem is proved.

In our next theorem G will be taken compact and we require the
following

LEMMA. Suppose G is a compact abelian group with Haar measure
normalized to 1, and X is a complex commutative B-algebra with
identity e with no restrictions on W(X). Let ¢ be a continuous homo-
morphism from B(G, X) to L(G) which is such that ¢(fe)=f for all
FEL(G). Then there exists an MEW(X) such that (¢g)(a) =dug(a)
a.e. for any gEB(G, X).

ProoF. Since G is compact, the constant X-valued functions are in
B(G, X) and thus X can be considered to be a subset of B(G, X).
In other words, if x€X, we denote the function f(a) =x (for almost
all aEG) simply by x itself. If x, yEX CB(G, X), then x * y= [exyda
=xy since m(G) =1. (Here, xy denotes the ordinary product of x and
y in the B-algebra X.) Now ¢ is not identically zero on X because
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¢(1-e) =1. Further, for any xEX, ¢(x * e) =¢(xe) =d(x) =p(x) * p(e)
=¢(x) * 1= [¢¢(x)(a)da =a constant a.e. over G. Hence each xEX is
mapped by ¢ onto a constant function in L(G). ¢ is additive on X and
furthermore: ¢(x * y) =p(xy) =¢(x) * ¢(y) = (x)p(y) for any x, yEX.
Consequently ¢ is a continuous nonzero multiplicative linear func-
tional on the B-algebra X and, as such, there exists an MEM(X)
with ¢(x) =¢u(x) for xEX.

Choose an arbitrary fEL(G), *€X and 4EG. We have:
d(frx(-,8)"%e) =¢(J(d) (-, 8) %) =f()b((+,8)'x) =(fx) x$((+,8)~e)
=¢(fx) * (-, 8)1=(-, &~ [d(fx)]"(8). Hence, for each 4EG,
[¢(fx) ]~ (8) = (a, 8)f(8)¢((a, 8)~'x) for all aEG except possibly over
a set of measure 0. We can therefore choose an a, (depending on &)
for which the last equation is true and substituting we find:
[6(f)]7(8) = (a0, Df(@)((ao, 8)"%) = (ao, 8)(as, &) (@)p(x)
= f(8)¢u(x). This implies ¢(fx) =pu(x)f for all fEL(G), xEX.

Taking finite linear combinations of functions of the type fx with
fEL(G) and xEX, we can find a sequence {f.} such that f,—g for
any gE€B(G, X) with ¢(f.) =¢u(fs). Hence ¢(g) =du(g) since ¢ is
continuous and the lemma is established.

THEOREM 2. Let G and X be as in the lemma and let X' denote a
semi-simple B-algebra with identity ¢’. Suppose T: B(G, X)—B(G, X')
is a continuous homomorphism such that T(fe)=fe' for any fEL(G).
Then there exists a continuous homomorphism o: X—X' such that
(Tg)(a) =0g(a) for any gEB(G, X).

ProoF. Let { W} be the set of neighborhoods of the identity 0€G
and let {jw} be an approximate identity in L(G). Then, if fEL(G),
xEX, we have T(w *fx)=T(jwx) * fe'’—>T(fx) as W—0. Taking
Fourier transforms we find [T(jwx)] ™ (fe')™—[T(fx)]™ so that
[T(jwx) ] (8) converges as W—0 for each 4EG. Call this limit o,(x).
It is clear that o4(x) is independent of the approximate identity
{jw} and the function f defining it. We have [T(fx) ]~ (8) =a4(x)f(d)e’.

Let MEM(X’) and consider the map ¢ 0o T from B(G, X) to
L(G). If fe€B(G, X) with fEL(G), then (¢u 0 T)(fe) =pu (fe')=f.
The map ¢m 0 T is continuous and the lemma applies to it. There-
fore, there is an MEM(X), depending on M’ EIM(X’), such that
du 0 T=u. Now:¢u [T(fx) [ (8) = [(da 0 T) (%) ]~(8) =J(8) (%)
=7(8)¢pu(04(x)). This means ¢ (04(x)) =du(x) for each M’'EM(X’)
and each 4€G, xEX.

We show that ¢4(x) is actually independent of 4. Suppose o4,(x)
=91, 04,(x)=9: and 4,78, For any M'E€M(X’) we have ¢ (1)
=¢u (y2) =pu(x). Since X’ is semi-simple, we must have y; =1y, and
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so g4(x) is independent of 8. Write g4(x) =0 (x). ¢ is a continuous
homomorphism from X to X’. We have, consequently, shown that
[T(fx)]™(8) =o(x)f(4) and this means T'(fx) =0 (x)f for all fEL(G),
xEX, because B(G, X') is semi-simple if X’ is semi-simple. Continu-
ing in a manner like that at the end of the lemma or the end of Theo-
rem 1, we find that (Tg)(a) =cg(a) for all g€ B(G, X). This completes
the proof.

We remark that, conversely, if 0: X—X’ is a continuous homo-
morphism, then the map (Tg)(a) =0g(a) from B(G, X) to B(G, X’)
is a continuous homomorphism with no restrictions on G, G XorX.
The proof is easy and is omitted.

THEOREM 3. In either Theorem 1 or 2, if T is an isomorphism from
B(G, X) onto B(G, X'), then o is an isomorphism from X onto X'.

PROOF. ¢ is one-one for if x,#x,, %1, x.EX, then fx;7#fx. where
fEL(G), f#0. Since T is one-one, T(fx1) =a(x1)f # T (fxs) =0 (x2)f so
that o(x;)) #0(x:). o is onto X’, for choose any x’&€X’. Find an
fEL(G) such that 7(0) #0. Since T is onto, there is a gEB(G, X)
such that og=fx’. Taking Fourier transforms: [og]™(8)=c2(d)
=f(8)x’. Setting ¢ =0, we find o2(0) =7(0)x’ so that ¢(2(0)/7(0)) ="
Hence, there is an x = 2(0)//(0) EX such that o(x) =x'.
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