COMBINATORIAL TOPOLOGY OF AN ANALYTIC FUNCTION ON THE BOUNDARY OF A DISK

BY CHARLES J. TITUS

Communicated by Edwin Moise, August 12, 1960

Preliminaries. A complex valued function $\zeta(t)$ defined on an oriented circle S of circumference c, t the usual distance parameter, $0 \le t < c$, is a regular representation if it possesses a continuous non-vanishing derivative $\zeta'(t)$. An image point ζ_0 is a *simple crossing point* if there exist exactly two distinct numbers t_0' and t_0'' such that $\zeta(t_0') = \zeta_0$ and if the tangents $\zeta'(t_0')$ and $\zeta'(t_0'')$ are linearly independent. A regular representation is *normal* (Whitney) if it has a finite number of simple crossing points and has for every other image point ζ but one preimage point t. A pair of representations $\widetilde{\zeta}$ and ζ are *topologically equivalent* if there exists a sense-preserving homeomorphism t of t onto t such that t are t onto t onto t such that t are t on t onto t onto t such that t are t on t onto t onto t such that t on t onto t o

A mapping F of a disk D, |z| < R, is open if, for every open set U in D, F(U) is open in the plane; F is light if the preimage of each image point is totally disconnected; F is properly interior on \overline{D} , $|z| \le R$, if F is continuous on \overline{D} , F| bdy D is locally topological, F is sense-preserving, light and open on D. It can be shown (using results of Carathéodory, Stoilow, Whyburn) that given a properly interior mapping F there exists an analytic function W on D that is locally topological near and on bdy D and there exists a sense-preserving homeomorphism H of \overline{D} onto \overline{D} such that $F = W \circ H$.

A representation ζ will be called an *interior boundary* [analytic boundary] if ζ is locally topological and if there exists a properly interior mapping F [an analytic function W that is locally topological near and on bdy D] such that $F(Re^{it}) \equiv \zeta(t) [W(Re^{it}) \equiv \zeta(t)]$. Thus, every interior boundary is topologically equivalent to an analytic boundary.

The problem probably first arose in the study of the Schwartz-Christoffel mapping function (Schwartz, Schlaefli, Picard) and, in this context, was formulated essentially as follows.

Let Z_0, Z_1, \dots, Z_{n-1} be a sequence of *n*-distinct complex numbers which are in general position. By connecting these points consecutively from Z_k to Z_{k+1} , mod n, a closed oriented polygon is formed. Let $\alpha_k \pi$ be the angle from $Z_k - Z_{k-1}$ to $Z_{k+1} - Z_k$ with $-1 < \alpha_k < 1$. Then for any set of n real number and any complex number $A \neq 0$ the function

$$\Phi(Z) = A(Z - a_0)^{-\alpha_0}(Z - a_1)^{-\alpha_1} \cdot \cdot \cdot (Z - a_{n-1})^{-\alpha_{n-1}},$$

with $-\pi/2 < \arg(Z - \alpha_k) < \pi/2$, is an analytic function on the upper half plane; furthermore

$$W(z) = \int_{z}^{z} \Phi(Z) dZ + B$$

is also analytic there and maps the real axis onto a possibly different polygon with $W(a_k) = Z'_k$ but with $Z'_k - Z'_{k-1}$ having the same direction as $Z_k - Z_{k-1}$.

PROBLEM A (EMILE PICARD, Traité d'analyse, vol. 2, p. 313). Find necessary and sufficient conditions on Z_0, Z_1, \dots, Z_{n-1} so that there exist complex numbers A, B and real numbers a_0, a_1, \dots, a_{n-1} so that $W(a_k) = Z_k$, and thus that the real axis is mapped onto the polygon determined by the given Z_k . (Actually Schlaefli and others were concerned also with the problem of finding an effective method for determining the a_k .)

Some time ago a clearly related problem was formulated by Loewner (circa 1948) which will be stated in the form:

PROBLEM B (CHARLES LOEWNER). Given a normal representation ζ of a closed curve find necessary and sufficient conditions that ζ be equivalent to an analytic boundary (or, what is the same thing, that ζ be an interior boundary).

Problem A is a corollary of Problem B. In this paper a solution to Problem B is announced. More precisely Problem A was concerned only with oriented polygons with a tangent winding number of one.

Statement of Results. In the following ζ will always be a normal representation; the simple crossing points will be called vertices. Let $\tau[\zeta]$ be the tangent winding number of ζ and let $\omega(\zeta, \pi)$ be the winding number (index) of ζ about a point π , $\pi \in [\zeta]$. The outer boundary of ζ is the subset of $[\zeta]$ which is contained in the closure of the unbounded component of the complement of $[\zeta]$; a point π is a positive outer point if π is on the outer boundary and is not a vertex and if there exist points π' arbitrarily close to π such that $\omega(\zeta, \pi') = +1$.

LEMMA. If ζ is an interior boundary then $\tau[\zeta] \ge 1$ and $\omega(\zeta, \pi) \ge 0$ for all $\pi \in [\zeta]$.

Because of this Lemma only curves ζ which satisfy these conditions need be considered; call this class C^+ .

Begin at a positive outer point $\pi = \zeta(0)$ and traverse the curve in the direction of its sense. Index the vertices using consecutively the integers from 0 to n-1, ζ_0 , ζ_1 , \cdots , ζ_{n-1} . Let the 2n preimages of the

vertices be denoted by s_k and index so that $0 < s_0 < s_1 < \cdots < s_{2n-1} < c$. If $\zeta(s_j) = \zeta(s_k)$, $s_j \neq s_k$, s_j is also denoted by s_k^* (and s_k by s_j^*). Let ν_k be defined, with $\zeta(t) = \xi(t) + i\eta(t)$, by

$$\nu_k = \nu(s_k) = \operatorname{sgn} \left| \begin{array}{cc} \xi'(s_k^*) & \eta'(s_k^*) \\ \xi'(s_k) & \eta'(s_k) \end{array} \right|.$$

If the sequence $\{s_k\}$ together with the * operation, the ν_k and the fact that $\zeta(0) = \pi$ is a positive outer point are given then the oriented curve represented by ζ is determined up to a sense preserving homeomorphism of the plane onto itself (follows from e.g. Adkisson and MacLane and Gehman). See Figure 1 in which

$$\nu_0 = \nu_1 = \nu_3 = \nu_5 = 1, \qquad \nu_2 = \nu_4 = \nu_6 = \nu_7 = -1;$$
 $s_0^* = s_7, \qquad s_1^* = s_6, \qquad s_2^* = s_3, \qquad s_4^* = s_5.$

Fig. 1

Select any point π on the outer boundary of ζ , $\zeta(0) = \pi$, $\zeta \in C^+$ and let s_k be the number with the smallest index so that $\nu_k = -1$. At least one of the following situations must arise:

Case I. $s_k^* < s_k$.

Case II. $s_k^* > s_k$.

In the later case for each choice of an $s_i < s_k$ there corresponds one of the two situations II' and II'':

CASE II'. $s_k^* > s_k$ and $s_j < s_k < s_k^* < s_j^*$,

Case II". $s_k^* > s_k$ and $s_j < s_k < s_j^* < s_k^*$.

In each of these situations a cut is defined that breaks ζ up into a pair of piecewise regular representations ζ^* and ζ^{**} . (It turns out

that ζ^* and ζ^{**} can be smoothed and altered slightly so that each becomes a normal representation. This step, which is bothersome and simple technically, will be omitted here; in what follows the reader may ignore this problem and pretend that ζ^* and ζ^{**} have already been made normal.)

In Case I define on circles of circumference c^* and c^{**} :

$$\zeta^*(t) = \zeta(t + s_k^*), \qquad 0 \le t \le s_k - s_k^* = c^*;$$

$$\zeta^{**}(t) = \begin{cases} \zeta(t), & 0 \le t \le s_k^*, \\ \zeta(s_k - s_k^* + t), & s_k^* \le t \le c - s_k + s_k^* = c^{**}. \end{cases}$$

In Case II select $s_j < s_k$ and if $s_j < s_k < s_k^* < s_j^*$ we have Case II'; define on circles of circumference c^* and c^{**} :

$$\zeta^*(t) = \begin{cases} \zeta(t+s_j), & 0 \le t \le s_k - s_j, \\ \zeta(s_j + s_k - s_k^* + t), & s_k - s_j \le t \le s_k - s_j + s_j^* - s_k^* = c^*; \end{cases}$$

$$\zeta^{**}(t) = \begin{cases} \zeta(t), & 0 \le t \le s_k^*, \\ \zeta(s_k - s_k^* - t), & s_k^* \le t \le s_k^* + s_k - s_j, \\ \zeta(s_j + s_j^* - s_k - s_k^* + t), \\ s_k^* + s_k - s_j \le t \le c + s_j + s_j^* - s_k - s_k^* = c^{**}; \end{cases}$$

but if in Case II, $s_j < s_k < s_j^* < s_k^*$, one has Case II" and define

$$\zeta^*(t) = \begin{cases} \zeta(s_j^* + t), & 0 \le t \le s_k^* - s_j^*, \\ \zeta(s_j^* + s_k^* + s_k - t), & s_k^* - s_j^* \le t \le s_k + s_j + s_k^* - s_j^* = c^*; \end{cases}$$

$$\zeta^{***}(t) = \begin{cases} \zeta(t), & 0 \le t \le s_j^*, \\ \zeta(s_j - s_j^* + t), & s_j^* \le t \le s_j^* - s_j + s_k, \\ \zeta(s_j - s_j^* + s_k^* - s_k + t), & s_j^* - s_j + s_k \le t \le c + s_j^* - s_j + s_k - s_k^* = c^{**}. \end{cases}$$

These three cuts are illustrated in Figures 2, 3 and 4.

Assuming the ζ^* and ζ^{**} altered so that they are normal (as commented upon parenthetically above) the cut process can be continued so long as the new representations remain in C^+ . A normal representation ζ possesses a complete cut sequence provided that the representations generated by successive cuts always remain in C^+ ; thus ultimately the representations (in the slightly altered form) describe simple closed positively oriented curves.

Fig. 4

PRINCIPAL LEMMA. A normal representation ζ is an interior boundary if and only if (i) there exists a cut of type I and the corresponding ζ^* and ζ^{**} are both interior boundaries, or (ii) there does not exist a cut of type I (whence there must exist cuts of type II) but there exists an s_j and a corresponding cut of type II' or II' so that ζ^* and ζ^{**} are interior boundaries.

It is also true that the slightly altered ζ^* and ζ^{**} have strictly less vertices than the original ζ .

It follows directly from this Lemma that

THEOREM 1. A normal representation ζ is an interior boundary if and only if ζ possesses a complete cut sequence.

Let μ be the number of cuts of type I required in a complete cut sequence for a given interior boundary ζ .

THEOREM 2. If W is an analytic function which extends a representation equivalent to ζ to the disk then W(z) has precisely μ zeros (counting multiplicity) in the disk, (thus e.g., $\tau[\zeta] = \mu + 1$).

COROLLARY. ζ has a complete cut sequence with $\mu = 0$ (no cuts of type I) if and only if there is a sense-preserving local homeomorphism F which extends ζ to the disk.

BIBLIOGRAPHY

- 1. V. W. Adkisson and Saunders MacLane, Extensions of homeomorphisms on the sphere, Lectures in Topology, University of Michigan Press, 1941, pp. 223-235.
- 2. Constantin Carathéodory, Conformal representation, Cambridge University Press, 1932.
- 3. H. M. Gehman, On extending a continuous 1-1 correspondence of two plane continuous curves to a correspondence of their planes, Trans. Amer. Math. Soc. vol. 42 (1936) pp. 79-86.
 - 4. Emile Picard, Traité d'analyse (2), pp. 310-314.
- 5. Simion Stoilow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris, Gauthier-Villars, 1956.
- 6. C. J. Titus, A theory of normal curves and some applications, Pacific J. Math. vol. 10 (1960) pp. 1083-1096.
- 7. ——, The image of the boundary under a local homeomorphism, Functions of a Complex Variable, University of Michigan Press, 1955, pp. 433-435.
- 8. Hassler Whitney, On regular closed curves in the plane, Compositio Math. vol. 4 (1937) pp. 276-284.
 - 9. G. T. Whyburn, Topological analysis, Princeton University Press, 1958.

University of Michigan