AN EXACT SEQUENCE IN DIFFERENTIAL TOPOLOGY

MORRIS W. HIRSCH

Communicated by Deane Montgomery, May 12, 1960

1. Introduction. The purpose of this note is to describe an exact sequence relating three series of abelian groups: Γ^n , defined by Thom [3]; θ^n , defined by Milnor [1]; and Λ^n , defined below. The sequence is written

(1)
$$\cdots \to \Gamma^n \xrightarrow{j} \theta^n \xrightarrow{k} \Lambda^n \xrightarrow{d} \Gamma^{n-1} \to \cdots .$$

We now describe these groups briefly.

To obtain Γ^n , divide the group of diffeomorphisms of the n-1 sphere S^{n-1} by the normal subgroup of those diffeomorphisms that are extendable to the *n*-ball. See [2] for details.

The set θ^n is the set of J-equivalence classes of closed, oriented, differentiable n-manifolds that are homotopy spheres. If M is an oriented manifold, let -M be the oppositely oriented manifold. Two closed oriented n-manifolds M and N are J-equivalent if there is an oriented n+1-manifold X whose boundary is the disjoint union of M and -N, and which admits both M and N as deformation retracts. We denote the J-equivalence class of M by [M]. If [M] and [N] are elements of θ^n , their sum is defined to be [M # N], where [M # N] is obtained by removing the interior of an n-ball from M and N and identifying the boundaries in a suitable way. Details may be found in [1].

The group Λ^n is defined analogously using combinatorial manifolds. Instead of the interior of an *n*-ball, the interior of an *n*-simplex is removed. If M is a combinatorial manifold, we write $\langle M \rangle$ for its J-equivalence class.

2. The sequence. To define $k : \theta^n \to \Lambda^n$, we observe that every differentiable manifold M defines a combinatorial manifold \overline{M} , unique up to combinatorial equivalence, by means of a smooth triangulation of M [4]. We define $k[M] = \langle \overline{M} \rangle$.

Let $g: S^{n-1} \to S^{n-1}$ represent an element γ of Γ^n . According to J. Munkres [2], there is a unique (up to diffeomorphism) differentiable manifold V_{γ} corresponding to γ , such that $\overline{V}_{\gamma} = \overline{S}^n$. To obtain V_{γ} , identify two copies of $R^n - 0$ by the diffeomorphism $x \to (1/|x|)g(x/|x|)$. Here R^n is Euclidean n-space and |x| is the usual norm. The diffeomorphism class of V_{γ} depends only on γ , and

 V_{γ} is diffeomorphic to V_{δ} if and only if $\gamma = \delta$. We define $j: \Gamma^n \to \theta^n$ by $j(\gamma) = [V_{\gamma}].$

To define $d: \Lambda^n \to \Gamma^{n-1}$, we proceed as follows. If $\langle M \rangle$ is an element of Λ^n , let M_0 be obtained from M by removing the interior of an n-simplex. According to a recent result of A. M. Gleason, there is a differentiable manifold N such that $\overline{N} = M_0$. By [2], N is unique up to diffeomorphism, because M_0 is contractible. Since the boundary ∂N of N is combinatorially an n-1 sphere, there is a unique $\beta \in \Gamma^{n-1}$ such that $\partial N = V_{\beta}$. We define $d\langle M \rangle = \beta$. It can be shown that β depends only on $\langle M \rangle$.

THEOREM. The sequence (1) is exact.

The proof will appear in a subsequent paper.

BIBLIOGRAPHY

- 1. J. Milnor, Differentiable manifolds which are homotopy spheres, Princeton University, 1959 (mimeographed).
- 2. J. Munkres, Obstructions to the smoothing of piecewise differentiable maps, Annals of Mathematics, to appear.
- 3. R. Thom, Des variétés triangulées aux varietés différentiables, Proceedings of the International Congress of Mathematicians, 1958, pp. 248-255.
 - 4. J. H. C. Whitehead, On C1 complexes, Ann. Math. vol. 41 (1940) pp. 809-824.

THE INSTITUTE FOR ADVANCED STUDY