CLIFFORD PARALLELS IN ELLIPTIC (2n-1)-SPACE AND ISOCLINIC n-PLANES IN EUCLIDEAN 2n-SPACE¹

BY YUNG-CHOW WONG

Communicated by Irving Kaplansky, March 18, 1960

An elliptic space is a projective space turned into a metric space by according a special role to an arbitrarily chosen but fixed non-degenerate imaginary hyperquadric. Let p_1 , p_2 be any two points in the elliptic space. Then the distance between p_1 , p_2 is defined as $(1/2(-1)^{1/2})\log(p_1p_2\ q_1q_2)$, where q_1 , q_2 are the two points at which the line $p_1\ p_2$ intersects the hyperquadric and $(p_1p_2\ q_1q_2)$ denotes the cross-ratio of these four collinear points. It follows at once from the definition that (i) the distance (between any two real points) may be taken to be d or $\pi-d$ with $0 \le d \le \pi$, (ii) distances on the same straight line are additive, and (iii) the total length of any straight line is π .

It is well known that in an elliptic space of dimension 3, the concept of Clifford parallelism exists which has many interesting properties (see, for example, Klein [5]). A similar concept of parallelism for elliptic spaces of dimension ≥ 3 is the concept of Clifford-parallel (n-1)-planes in an elliptic space, El^{2n-1} , of dimension 2n-1. We define this as follows:

In an El^{2n-1} , two (n-1)-planes A and B are said to be Clifford-parallel if the distance to B from any point in A is the same. The relation between two (n-1)-planes of being Clifford-parallel is reflexive, symmetric but not transitive. A set of (n-1)-planes in El^{2n-1} is called a maximal set of mutually Clifford-parallel (n-1)-planes if every (n-1)-plane in the set is Clifford-parallel to every other (n-1)-plane in the set, and if the set is not a subset of a larger set of mutually Clifford-parallel (n-1)-planes. A maximal set of mutually Clifford-parallel (n-1)-planes in El^{2n-1} is said to form a foliation (partial foliation) of El^{2n-1} if through each point of El^{2n-1} there passes one and only one (at most one) (n-1)-plane of the set.

Existence of maximal sets of mutually Clifford-parallel (n-1)-planes in any El^{2n-1} is established by the following theorem:

THEOREM 1. In an $\mathrm{El}^{2n-1}(n>1)$, there are two or more maximal sets of mutually Clifford-parallel (n-1)-planes containing any given (n-1)-plane. If n is odd, there exist only 1-dimensional maximal sets. If

¹ Some of the results contained in this paper were obtained while the author was participating in a National Science Foundation Research Project at the University of Chicago in 1959.

² We call a set of (n-1)-planes p-dimensional if it depends on p parameters.

n=2m (m=odd), there exist only 2-dimensional maximal sets. But if $n=2^sm$ (m=odd, s>1), then according as $s\equiv 1, 2, 3, or 0 \pmod{4}$, there exist and only exist maximal sets of dimension

4, 8, 12,
$$\cdots$$
, 2s - 6, 2s - 2, 2s;
4, 8, 12, \cdots , 2s - 4, 2s;
4, 8, 12, \cdots , 2s - 2, 2s + 2;
4, 8, 12, \cdots , 2s - 4, 2s, 2s + 1,

or

respectively.

Added in proof. The number of distinct (to within a motion or a motion followed by a reflection) p-dimensional maximal sets of mutually Clifford-parallel (n-1)-planes in an El^{2n-1} has been determined.

In an El³, we have the classical results on Clifford-parallel lines. In an El⁷, there are $4 \infty^3$ maximal sets of mutually Clifford-parallel 3-planes containing any given 3-plane, and each of these maximal sets is of dimension 4 and forms a foliation of El⁷. In an El¹⁵, the maximal sets of mutually Clifford-parallel 7-planes are of dimensions 8 or 4, and each of the 8-dimensional maximal sets forms a foliation of El¹⁶. In an elliptic space El²ⁿ⁻¹ of any other dimensions (i.e. $2n-1\neq 3$, 7, 15), every maximal set of mutually Clifford-parallel (n-1)-planes forms only a partial foliation of the space El²ⁿ⁻¹.

The next three theorems show that in a certain sense a maximal set of mutually Clifford-parallel (n-1)-planes in El^{2n-1} is a linear set with the (n-1)-planes as elements.

THEOREM 2. In an El^{2n-1} , let A, B be any two fixed Clifford-parallel (n-1)-planes, and C any (n-1)-plane Clifford-parallel to A and B such that distances between A, B, C are additive.³ Then all such (n-1)-planes C form a 1-dimensional set of mutually Clifford-parallel (n-1)-planes and the distances between the (n-1)-planes of this set are additive.

We call this 1-dimensional set, which obviously contains the two (n-1)-planes A and B, the additive linear set determined by the Clifford-parallel (n-1)-planes A, B. It plays a role similar to that of a straight line passing through two points.

 $^{^{8}}$ By this we mean that one of the three distances is equal to the sum of the other two.

THEOREM 3. Let ξ be any maximal set of mutually Clifford-parallel (n-1)-planes in El^{2n-1} . If A, B are any two (n-1)-planes in ξ , then the additive linear set determined by A, B is contained in ξ .

Bases of a special type exist in every maximal set of mutually Clifford-parallel (n-1)-planes in El^{2n-1} , as is seen in the following theorem:

THEOREM 4. Let ξ be any p-dimensional maximal set of mutually Clifford-parallel (n-1)-planes in El^{2n-1} . Then there exist p+1, but not more than p+1, (n-1)-planes of ξ such that the distance between every two of them is $\pi/4$. Furthermore, if the distances from any (n-1)-plane of ξ to these p+1 (n-1)-planes are d_a $(0 \le a \le p)$, then $\sum_a \cos^2 2d_a = 1$. Conversely, for any given set of p+1 distances d_a such that $0 \le d_a \le \pi$ and $\sum_a \cos^2 2d_a = 1$, there exists a unique (n-1)-plane Clifford-parallel to each of these p+1 (n-1)-planes and at distances d_a from them, and this (n-1)-plane belongs to ξ .

It is easy to see that the elliptic geometry of dimension (2n-1) is equivalent to the geometry of m-planes $(1 \le m \le 2n-1)$ through a fixed point in a Euclidean 2n-space E^{2n} . If we define two n-planes in E^{2n} to be *isoclinic with each other* when the angle between any line in one of the n-planes and its orthogonal projection in the other n-plane is always the same, then the Clifford parallelism in E^{2n-1} is equivalent to the concept of isoclinic n-planes in E^{2n} .

Isoclinic 2-planes in E^4 , which do not necessarily pass through the same point, have been much studied, though seldom in conjunction with Clifford parallels in El^3 [6; 7; 9; 11]. An interesting connection with functions of one complex variable is the well-known theorem that a 2-dimensional surface of class C^2 in E^4 has the property that its tangent 2-planes are all mutually isoclinic iff the surface is an R-surface, i.e. a surface given in suitable rectangular coordinates (x, y, u, v) in E^4 by u = u(x, y), v = v(x, y), where u(x, y) and v(x, y) are the real and imaginary parts of an analytic function f(x+iy). We try to find the higher dimensional analogues of such surfaces but obtain the following negative result:

THEOREM 5. The only n-dimensional surfaces of class C^2 in E^{2n} (n>2) whose tangent n-planes are all mutually isoclinic are the n-planes.

To obtain the results stated above, we first determine all the maximal sets of mutually isoclinic n-planes in E^{2n} . Let (x^1, \dots, x^{2n}) be rectangular coordinates in E^{2n} , and let an n-plane through the origin be given by the equation

$$x_1 = xA$$

where $x = (x^1, \dots, x^n)$ and $x_1 = (x^{n+1}, \dots, x^{2n})$ are $1 \times n$ matrices, and A is an $n \times n$ matrix with constant real elements. If we denote by A also the n-plane whose equation is $x_1 = xA$, then a necessary and sufficient condition for the two n-planes A and B to be isoclinic with each other is that the matrix equation

$$(1 + AB')(1 + BB')^{-1}(1 + BA') = \rho^2(1 + AA')$$

be satisfied, where a dash indicates the transpose of a matrix and ρ is a suitable scalar which is equal to the cosine of the angle between the *n*-planes A and B. From this, we can prove that any maximal set of mutually isoclinic *n*-planes in E^{2n} containing the *n*-plane $x_1=0$ is congruent to a set of *n*-planes consisting of the *n*-plane orthogonal to $x_1=0$ and the *n*-planes whose equations are

$$x_1 = x(\lambda_0 + \lambda_1 B_1 + \cdots + \lambda_q B_q),$$

where the λ 's are scalar parameters and the set (B_1, \dots, B_q) of real square matrices of order n is a maximal⁴ real solution of the equations

(*)
$$B_h + B_h' = 0$$
, $B_h^2 = -1$, $B_h B_k + B_k B_h = 0$, $(h, k = 1, 2, \dots; h \neq k)$.

The system (*) of equations has appeared in the literature in connection with the classical problem of A. Hurwitz's on composition of quadratic forms [1;2;4]. But for our purpose, a more detailed study of its real solutions than has hitherto been given is required. Using reductions by unitary similarity alone, we obtain all the maximal real solutions of (*), yielding as by-product a new and elementary proof of the Hurwitz-Radon theorem [3;8;10], which states that the equations (*), with $1 \le h$, $k \le p$, admit a solution in the field of complex numbers or the field of real numbers iff the pair of positive integers (n, p) has one of the following values:

p=2r+1 with $r\equiv 0$ or 3 (mod 4), and n is any multiple of 2^r ; p=2r+1 with $r\equiv 1$ or 2 (mod 4), and n is any multiple of 2^{r+1} ; p=2r+2 with $r\equiv 3$ (mod 4), and n is any multiple of 2^r ; and p=2r+2 with $r\equiv 0$, 1, or 2 (mod 4), and n is any multiple of 2^{r+1} .

⁴ We say that (B_1, \dots, B_q) is *maximal* solution of (*) if it cannot be extended to a solution containing more matrices.

REFERENCES

- 1. A. Albert, Quadratic forms permitting composition, Ann. of Math. vol. 43 (1942) pp. 161-177.
- 2. R. Dubisch, Composition of quadratic forms, Ann. of Math. vol. 47 (1946) pp. 510-527.
- 3. B. Eckmann, Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer Formen, Comment. Math. Helv. vol. 15 (1943) pp. 358-366.
- **4.** A. Hurwitz, Über die Komposition der quadratischer Formen (posthumous paper), Math. Ann. vol. 88 (1923) pp. 1-25.
 - 5. F. Klein, Vorlesungen über nicht-euklidische Geometrie, Berlin, 1928.
- 6. K. Kommerell, Riemannsche Flachen im ebenen Raum von vier Dimensionen, Math. Ann. vol. 60 (1905) pp. 546-596.
- 7. S. Kwietniewski, Über Flachen des vierdimensionalen Raumes, deren samtliche Tangentialebenen untereinander gleichwinklig sind, and ihre Beziehung zu den ebenen Kurven, Dissertation, Zürich, 1902.
- 8. H. C. Lee, Sur le théorème de Hurwitz-Radon pour la composition des formes quadratiques, Comment. Math. Helv. vol. 21 (1948) pp. 261-269.
 - 9. H. P. Manning, Geometry of four dimensions, New York, 1914.
- 10. J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg vol. 1 (1922) pp. 1–14.
- 11. Y. C. Wong, Fields of isocline tangent planes along a curve in a Euclidean 4-space, Tôhoku Math. J. vol. 3 (1951) pp. 322-329.

University of Hong Kong