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An elliptic space is a projective space turned into a metric space
by according a special role to an arbitrarily chosen but fixed non-
degenerate imaginary hyperquadric. Let 1, p» be any two points in
the elliptic space. Then the distance between p;, p. is defined as
(1/2(—1)12) log (p1p2 192), where g1, ¢z are the two points at which
the line p; p» intersects the hyperquadric and (p1ps ¢1¢2) denotes the
cross-ratio of these four collinear points. It follows at once from the
definition that (i) the distance (between any two real points) may
be taken to be d or 7—d with 0=d =, (ii) distances on the same
straight line are additive, and (iii) the total length of any straight
line is 7.

It is well known that in an elliptic space of dimension 3, the con-
cept of Clifford parallelism exists which has many interesting proper-
ties (see, for example, Klein [5]). A similar concept of parallelism
for elliptic spaces of dimension =3 is the concept of Clifford-parallel
(n—1)-planes in an elliptic space, E1?*~1, of dimension 2z —1. We de-
fine this as follows:

In an El**71, two (n—1)-planes A and B are said to be Clifford-
parallel if the distance to B from any point in A is the same. The
relation between two (z—1)-planes of being Clifford-parallel is re-
flexive, symmetric but not transitive. A set of (z—1)-planes in
El?»-1 is called a maximal set of mutually Clifford-parallel (n—1)-
planes if every (n—1)-plane in the set is Clifford-parallel to every
other (#—1)-plane in the set, and if the set is not a subset of a larger
set of mutually Clifford-parallel (#—1)-planes. A maximal set of
mutually Clifford-parallel (#—1)-planes in El?*7! is said to form a
foliation (partial foliation) of EI?»~1 if through each point of El?»—!
there passes one and only one (at most one) (z—1)-plane of the set.

Existence of maximal sets of mutually Clifford-parallel (z—1)-
planes in any El?"~1 is established by the following theorem:

THEOREM 1. In an EI**~1(n>1), there are two or more maximal sets
of mutually Clifford-parallel (n—1)-planes containing any given (n
—1)-plane. If n is odd, there exist only 1-dimensional® maximal sets. If

1 Some of the results contained in this paper were obtained while the author was
participating in a National Science Foundation Research Project at the University
of Chicago in 1959.

2 We call a set of (n—1)-planes p-dimensional if it depends on p parameters.
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n=2m (m=odd), there exist only 2-dimensional maximal sets. But if
n=2m (m=odd, s>1), then according as s=1, 2, 3, or 0 (mod 4),
there exist and only exist maximal sets of dimension

4,8,12,«+,2s — 6, 2s — 2, 2s;
4,8,12, - - -, 2s — 4, 2s;

4,8,12,- -+ ,25 — 2,25 + 2;
or
4,812, - -+, 25 — 4,25, 25 + 1,

respectively.

Added in proof. The number of distinct (to within a motion or a
motion followed by a reflection) p-dimensional maximal sets of mu-
tually Clifford-parallel (#—1)-planes in an EI**~! has been deter-
mined.

In an EI3, we have the classical results on Clifford-parallel lines.
In an El’, there are 4«3 maximal sets of mutually Clifford-parallel
3-planes containing any given 3-plane, and each of these maximal
sets is of dimension 4 and forms a foliation of El”. In an EI%, the
maximal sets of mutually Clifford-parallel 7-planes are of dimensions
8 or 4, and each of the 8-dimensional maximal sets forms a foliation
of EI®, In an elliptic space EI?»! of any other dimensions (i.e.
2n—15#3, 7, 15), every maximal set of mutually Clifford-parallel
(n—1)-planes forms only a partial foliation of the space El**—1,

The next three theorems show that in a certain sense a maximal
set of mutually Clifford-parallel (z—1)-planes in El**1 is a linear
set with the (z—1)-planes as elements.

THEOREM 2. I'n an El1>*~1, let A, B be any two fixed Clifford-parallel
(n—1)-planes, and C any (n—1)-plane Clifford-parallel to A and B
such that distances between A, B, C are additive.? Then all such (n—1)-
planes C form a 1-dimensional set of mutually Clifford-parallel (n—1)-
planes and the distances between the (n—1)-planes of this set are addi-
tive.

We call this 1-dimensional set, which obviously contains the two
(n—1)-planes 4 and B, the additive linear set determined by the
Clifford-parallel (z—1)-planes 4, B. It plays a role similar to that of
a straight line passing through two points.

3 By this we mean that one of the three distances is equal to the sum of the other
two,
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THEOREM 3. Let & be any maximal set of mutually Clifford-parallel
(n—1)-planes in EI?»1 If A, B are any two (n—1)-planes in &, then
the additive linear set determined by A, B is contained in §.

Bases of a special type exist in every maximal set of mutually
Clifford-parallel (z—1)-planes in El?>»~1, as is seen in the following
theorem:

THEOREM 4. Let & be any p-dimensional maximal set of mutually
Clifford-parallel (n—1)-planes in E1**=1. Then there exist p+1, bus
not more than p+1, (n—1)-planes of & such that the distance between
every two of them is w/4. Furthermore, if the distances from any (n—1)-
plane of & to these p+1 (n—1)-planes are ds (0 Sa = p), then Y, cos? 2d,
=1. Conversely, for any given set of p+1 distances dg suchthat 0=d, S
and Y, cos?2d,=1, there exists a unique (n—1)-plane Clifford-
parallel to each of these p+1 (n—1)-planes and at distances d, from
them, and this (n—1)-plane belongs to &.

It is easy to see that the elliptic geometry of dimension (2#—1)
is equivalent to the geometry of m-planes (1 =m <2n—1) through a
fixed point in a Euclidean 2xn-space E?. If we define two #-planes in
E?" to be tsoclinic with each other when the angle between any line
in one of the z-planes and its orthogonal projection in the other
n-plane is always the same, then the Clifford parallelism in El?#—!
is equivalent to the concept of isoclinic #-planes in E?»,

Isoclinic 2-planes in E4, which do not necessarily pass through the
same point, have been much studied, though seldom in conjunction
with Clifford parallels in EI® [6;7;9; 11]. An interesting connection
with functions of one complex variable is the well-known theorem
that a 2-dimensional surface of class C? in E* has the property that
its tangent 2-planes are all mutually isoclinic iff the surface is an R-
surface, i.e. a surface given in suitable rectangular coordinates
(%, 3, %, v) in E* by u=u(x, y), v=v(x, y), where u(x, y) and v(x, ¥)
are the real and imaginary parts of an analytic function f(x-2y).
We try to find the higher dimensional analogues of such surfaces but
obtain the following negative result:

THEOREM 5. The only n-dimensional surfaces of class C?in E?» (n>2)
whose tangent n-planes are all mutually isoclinic are the n-planes.

To obtain the results stated above, we first determine all the
maximal sets of mutually isoclinic #-planes in E?». Let (x?, - - -, x%")
be rectangular coordinates in E?*, and let an #-plane through the
origin be given by the equation
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x1 = x4,

where x=(x!, - - -, x*) and x;=(x"*1, . - -, x?*) are 1 X» matrices,
and 4 is an # X7 matrix with constant real elements. If we denote
by A also the z-plane whose equation is x; =xA4, then a necessary and
sufficient condition for the two n-planes 4 and B to be isoclinic with
each other is that the matrix equation

(1 + AB)(1 + BB)'(1 + BA’) = p*(1 + 44

be satisfied, where a dash indicates the transpose of a matrix and p
is a suitable scalar which is equal to the cosine of the angle between
the n#-planes A and B. From this, we can prove that any maximal set
of mutually isoclinic #-planes in E?* containing the #z-plane x;=0 is
congruent to a set of n-planes consisting of the #-plane orthogonal to
x1=0 and the n-planes whose equations are

X1 = x()\o +MB1+ -+ )\qu)r

where the N's are scalar parameters and the set (By, - - -, B,) of
real square matrices of order # is a maximal* real solution of the
equations

*) Bi+Bi{ =0, Bi=—1, BuBy+ BBy =0,
(h k=1,2,+--; k5 k).

The system (*) of equations has appeared in the literature in con-
nection with the classical problem of A. Hurwitz's on composition of
quadratic forms [1;2; 4]. But for our purpose, a more detailed study
of its real solutions than has hitherto been given is required. Using
reductions by unitary similarity alone, we obtain all the maximal
real solutions of (*), yielding as by-product a new and elementary
proof of the Hurwitz-Radon theorem [3; 8; 10], which states that
the equations (*), with 1=k, k<p, admit a solution in the field of
complex numbers or the field of real numbers iff the pair of positive
integers (%, p) has one of the following values:

p=2r+1 with =0 or 3 (mod 4), and # is any multiple of 27;

p=2r+1 with r=1 or 2 (mod 4), and # is any multiple of 27+1;

p=2r+2 with r=3 (mod 4), and % is any multiple of 27; and
p=2r+2 with r=0, 1, or 2 (mod 4), and # is any multiple of 27+,

4+ We say that (B, - « +, B,) is maximal solution of (*) if it cannot be extended
to a solution containing more matrices.
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