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An elliptic space is a projective space turned into a metric space 
by according a special role to an arbitrarily chosen but fixed non-
degenerate imaginary hyperquadric. Let pi, pi be any two points in 
the elliptic space. Then the distance between pi, p2 is defined as 
( l /2 ( —1)1/2) log (pip2 <Zi<Z2), where qi, qi are the two points at which 
the line p\ pi intersects the hyperquadric and (pip2 qiqi) denotes the 
cross-ratio of these four collinear points. I t follows at once from the 
definition that (i) the distance (between any two real points) may 
be taken to be d or ir — d with O^d^w, (ii) distances on the same 
straight line are additive, and (iii) the total length of any straight 
line is T. 

I t is well known that in an elliptic space of dimension 3, the con­
cept of Clifford parallelism exists which has many interesting proper­
ties (see, for example, Klein [5]). A similar concept of parallelism 
for elliptic spaces of dimension ^ 3 is the concept of Clifford-parallel 
(n-— l)-planes in an elliptic space, El2*1"1, of dimension 2n—l. We de­
fine this as follows: 

In an El2w_1, two (n — l)-planes A and B are said to be Clifford-
parallel if the distance to B from any point in A is the same. The 
relation between two (n-— l)-planes of being Clifford-parallel is re­
flexive, symmetric but not transitive. A set of (n — 1)-planes in 
El2w_1 is called a maximal set of mutually Clifford-parallel (n — 1)-
planes if every (n — 1)-plane in the set is Clifford-parallel to every 
other (w — l)-plane in the set, and if the set is not a subset of a larger 
set of mutually Clifford-parallel (n — 1) -planes. A maximal set of 
mutually Clifford-parallel (w-l ) -planes in El2 n _ 1 is said to form a 
foliation (partial foliation) of El2 n _ 1 if through each point of El2 n _ 1 

there passes one and only one (at most one) (̂ — 1) -plane of the set. 
Existence of maximal sets of mutually Clifford-parallel (n— 1)-

planes in any El2 n _ 1 is established by the following theorem : 

THEOREM 1. In an El2 n~1(w>l) , there are two or more maximal sets 
of mutually Clifford-parallel (n — 1)-planes containing any given (n 
— 1)-plane. If n is odd, there exist only 1-dimensional2 maximal sets. If 

1 Some of the results contained in this paper were obtained while the author was 
participating in a National Science Foundation Research Project at the University 
of Chicago in 1959. 

2 We call a set of (n — 1 )-planes ^-dimensional if it depends on p parameters. 
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n = 2m (m— odd), there exist only 2-dimensional maximal sets. But if 
n = 28m (m = odd, 5>1) , then according as 5 = 1, 2, 3, or 0 (mod 4), 
there exist and only exist maximal sets of dimension 

4, 8, 12, • • • , 25 - 6, 25 - 2, 25; 

4, 8, 12, • • • , 25 - 4, 25; 

4, 8, 12, • • - , 25 - 2, 25 + 2; 

or 
4, 8, 12, • • - , 25 - 4, 25, 25 + 1, 

respectively. 

Added in proof. The number of distinct (to within a motion or a 
motion followed by a reflection) ^-dimensional maximal sets of mu­
tually Clifford-parallel (w--l)-planes in an El2 n _ 1 has been deter­
mined. 

In an El3, we have the classical results on Clifford-parallel lines. 
In an El7, there are 4oo8 maximal sets of mutually Clifford-parallel 
3-planes containing any given 3-plane, and each of these maximal 
sets is of dimension 4 and forms a foliation of El7. In an El15, the 
maximal sets of mutually Clifford-parallel 7-planes are of dimensions 
8 or 4, and each of the 8-dimensional maximal sets forms a foliation 
of El16. In an elliptic space El2 n _ 1 of any other dimensions (i.e. 
2n — l5é3, 7, 15), every maximal set of mutually Clifford-parallel 
(n — l)-planes forms only a partial foliation of the space El2n_1 . 

The next three theorems show that in a certain sense a maximal 
set of mutually Clifford-parallel (n — l)-planes in El2 n _ 1 is a linear 
set with the (n — l)-planes as elements. 

THEOREM 2. In an El2n_1 , let A, B be any two fixed Clifford-parallel 
(n — 1)-planes, and C any (n — 1)-plane Clifford-parallel to A and B 
such that distances between A, B, C are additive.z Then all such (n — 1)-
planes C form a 1-dimensional set of mutually Clifford-parallel (n — 1)-
planes and the distances between the (n — 1)-planes of this set are addi­
tive. 

We call this 1-dimensional set, which obviously contains the two 
(n — 1) -planes A and B, the additive linear set determined by the 
Clifford-parallel (n — l)-planes A, B. I t plays a role similar to that of 
a straight line passing through two points. 

8 By this we mean that one of the three distances is equal to the sum of the other 
two. 
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THEOREM 3. Let £ be any maximal set of mutually Clifford-parallel 
(n — l)-planes in El2n_1 . If A, B are any two (n — l)-planes in £, then 
the additive linear set determined by A, B is contained in £. 

Bases of a special type exist in every maximal set of mutually 
Clifford-parallel (n — l)-planes in El2w_1, as is seen in the following 
theorem : 

THEOREM 4. Let £ be any p-dimensional maximal set of mutually 
Clifford-parallel (n — l)-planes in El2""1. Then there exist p + 1, but 
not more than p + 1, (n — 1) -planes of £ such that the distance between 
every two of them is 7r/4. Furthermore, if the distances from any (n — 1)-
plane of £ to these p + 1 (n — 1)-planes are da(0^aSp), then ^2a cos2 2da 

= 1. Conversely, for any given set of p + 1 distances da such that 0 ^ da S TT 
and ]T)a cos2 2da = l, there exists a unique (n — 1)-plane Clifford-
parallel to each of these p + 1 (n — 1)-planes and at distances da from 
them, and this (n — 1)-plane belongs to £. 

I t is easy to see that the elliptic geometry of dimension (2n — 1) 
is equivalent to the geometry of w-planes (l^m^2n — 1) through a 
fixed point in a Euclidean 2w-space E2n. If we define two w-planes in 
E2w to be isoclinic with each other when the angle between any line 
in one of the w-planes and its orthogonal projection in the other 
^-plane is always the same, then the Clifford parallelism in El2w-1 

is equivalent to the concept of isoclinic w-planes in E2w. 
Isoclinic 2-planes in E4, which do not necessarily pass through the 

same point, have been much studied, though seldom in conjunction 
with Clifford parallels in EP [ó; 7; 9; 11 ]. An interesting connection 
with functions of one complex variable is the well-known theorem 
that a 2-dimensional surface of class C2 in E4 has the property that 
its tangent 2-planes are all mutually isoclinic iff the surface is an R-
surface, i.e. a surface given in suitable rectangular coordinates 
(x, y, u, v) in E4 by u = u(x, y), v = v(x, y), where u(x, y) and v(x, y) 
are the real and imaginary parts of an analytic function f(x+iy). 
We try to find the higher dimensional analogues of such surfaces but 
obtain the following negative result: 

THEOREM 5. The only n-dimensional surfaces of class C2 in E2n (n > 2) 
whose tangent n-planes are all mutually isoclinic are the n-planes. 

To obtain the results stated above, we first determine all the 
maximal sets of mutually isoclinic w-planes in E2n. Let (xl, • • • , x2n) 
be rectangular coordinates in E2n, and let an w-plane through the 
origin be given by the equation 
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X \ — OCJTL y 

where x = (x1
i • • • , xn) and xi=(xw + 1 , • • • , x2n) are lXn matrices, 

and A is an wXw matrix with constant real elements. If we denote 
by A also the w-plane whose equation is X\ = xAy then a necessary and 
sufficient condition for the two w-planes A and B to be isoclinic with 
each other is that the matrix equation 

(1 + AB')(1 + BB')~l(\ + BA') = p2(l + A A') 

be satisfied, where a dash indicates the transpose of a matrix and p 
is a suitable scalar which is equal to the cosine of the angle between 
the w-planes A and B. From this, we can prove that any maximal set 
of mutually isoclinic w-planes in E2n containing the w-plane Xi = 0 is 
congruent to a set of w-planes consisting of the w-plane orthogonal to 
Xi = 0 and the ^-planes whose equations are 

Xi = x(\o + XiBi + • • • + \qBq), 

where the X's are scalar parameters and the set (Bi, • • • , Bq) of 
real square matrices of order n is a maximal4 real solution of the 
equations 

(*) Bh + Bi = 0, Bl= - 1, BhBk + BkBh = 0, 

(*, k = 1, 2, • • • ; h 7* *). 

The system (*) of equations has appeared in the literature in con­
nection with the classical problem of A. Hurwitz's on composition of 
quadratic forms [ l ; 2; 4] . But for our purpose, a more detailed study 
of its real solutions than has hitherto been given is required. Using 
reductions by unitary similarity alone, we obtain all the maximal 
real solutions of (*), yielding as by-product a new and elementary 
proof of the Hurwitz-Radon theorem [3; 8; 10], which states that 
the equations (*), with l^h, k^p, admit a solution in the field of 
complex numbers or the field of real numbers iff the pair of positive 
integers (n, p) has one of the following values: 

p = 2r + l with r = 0 or 3 (mod 4), and n is any multiple of 2 r; 
£ = 2r + l with r = l or 2 (mod 4), and n is any multiple of 2 r + 1 ; 
£ = 2r + 2 with r = 3 (mod 4), and n is any multiple of 2r; and 
p = 2r + 2 with r = 0, 1, or 2 (mod 4), and n is any multiple of 2 r+1 . 
4 We say that (Bi, • • • , Bq) is maximal solution of (*) if it cannot be extended 

to a solution containing more matrices. 
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