CIRCUMSCRIBED CUBES IN EUCLIDEAN n-SPACE BY S. S. CAIRNS Communicated by R. H. Bing, May 20, 1959 Let E^n be a euclidean n-space with a rectangular cartesian coordinate system $(x) = (x_1, \dots, x_n)$, and let (y) be any system which is a rotation of (x). Let $A \subset E^n$ be a closed bounded set containing n+1 linearly independent points. Its circumscribed (y)-box is the set $a_i \leq y_i \leq b_i$ $(i=1,\dots,n)$ where a_i and b_i are the respective minimum and maximum values of y_i on A. Let $c_i = b_i - a_i$ be interpreted as a function on the space R_{n-1} of rotations of coordinate systems, which is also the rotation space of the unit (n-1)-sphere $S^{n-1} \subset E^n$. Let $f: R_{n-1} \to E^n$ be the function which maps $r \in R_{n-1}$ onto the point $(c_1(r), \dots, c_n(r))$, relative to the fixed initial coordinate system (x). Let D be the diagonal $x_1 = \dots = x_n$ in E^n . The circumscribed (y)-box corresponding to a point $r \in R_{n-1}$ is an n-cube if and only if $f(r) \in D$. Accordingly, $K = f^{-1}(D)$, a subspace of R_{n-1} , will be called the space of circumscribed n-cubes of A. Its structure can be studied by means of the mapping f. For the purpose of this study the significant properties are as follows: (1) f is a continuous mapping of R_{n-1} into the region $x_i > 0$ $(i = 1, \dots, n)$ of E^n (2) $f(R_{n-1})$ is symmetric with respect to D. This second property follows from the fact that all possible permutations of axial directions can be achieved in a symmetric way through rotations. There is no need to distinguish between the two possible senses on a given y_i -direction, since the value of c_i is the same for both. Hence, one gets odd as well as even permutations of the c's. Let T^{n-1} be the simplex in E^n with vertices at the unit points on the (x)-axes. A central projection from the origin carries the mapping f into a continuous mapping $g: R_{n-1} \to T^{n-1}$ where $g(R_{n-1})$ is symmetric in the barycentric coordinates on T^{n-1} . The inverse image $g^{-1}(q)$, where q is the barycenter of T^{n-1} , is identical with $f^{-1}(D) = K$. This leads to the following result. THEOREM. The space of circumscribed cubes of a closed subset of euclidean n-space containing n+1 independent points is the inverse image $K = g^{-1}(q)$ of the center of an (n-1)-simplex T^{n-1} under a continuous mapping $g: R_{n-1} \to T^{n-1}$, where R_{n-1} is the rotation space of an (n-1)-sphere and where $g(R_{n-1})$ is symmetric in the barycentric coordinates on T^{n-1} . Any particular circumscribed n-cube is the (y)-cube for a system (y) obtainable from (x) without rotating any axis by more than $\pi/2$. A smaller number than $\pi/2$ can be used. Thus all the *n*-cubes, but not all the rotations yielding them, correspond to points of $K \cap Q^m$ where $Q^m \subset R_{n-1}$ is an *m*-cell of dimension $m = (n^2 - n)/2$, the dimension of R_{n-1} , and where Q^m can be so selected that $g(Q^m)$ is symmetric in the barycentric coordinates on T^{n-1} . The intersection $K \cap Q^m$ is the inverse image of q under the symmetric mapping $g: Q^m \to T^{n-1}$ of a closed m-cell into a closed (n-1)-cell. This leads to the conclusion that K is of dimension at least m-(n-1)=(n-1)(n-2)/2, which is the dimension of the rotation space R_{n-2} of the (n-2)-sphere. It is conjectured that K contains a subspace homeomorphic to R_{n-2} , a conjecture easily established for n=3. Thus, there exists at least a 1-circuit of circumscribed cubes in the three-dimensional case. These results strengthen the existence theorems of Kakutani [1] in three dimensions and of Yamabe and Yujobô [2] in n dimensions. The above is an outline of material being written up in detail for publication elsewhere. ## **BIBLIOGRAPHY** - 1. S. Kakutani, A proof that there exists a circumscribing cube around any bounded closed convex set in R³, Ann. of Math. (2) vol. 43 (1942) pp. 739-741. - 2. H. Yamabe and Z. Yujobô, On the continuous function defined on a sphere, Osaka Math. J. vol. 2 (1950) pp. 19-22. University of Illinois