SOLUTION OF THE DIRICHLET PROBLEM FOR EQUATIONS NOT NECESSARILY STRONGLY ELLIPTIC

BY MARTIN SCHECHTER

Communicated by E. Hille, August 7, 1958

Let $\mu = (\mu_1, \mu_2, \dots, \mu_n)$ be a sequence of indices and set

$$|\mu| = \sum \mu_k, \quad D^{\mu} = \frac{\partial^{|\mu|}}{(i\partial x_1)^{\mu_1}(i\partial x_2)^{\mu_2} \cdot \cdot \cdot (i\partial x_n)^{\mu_n}},$$

$$\xi^{\mu} = \xi_1^{\mu_1} \xi_2^{\mu_2} \cdot \cdot \cdot \xi_n^{\mu_n}$$

where $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ is any *n*-dimensional vector. The linear partial differential operator

$$A = \sum_{|\mu| \le m} a_{\mu}(x) D^{\mu}$$

with complex coefficients a_{μ} is elliptic at a point x if

$$P(x, \xi) \equiv \sum_{|\mu|=m} a_{\mu}(x)\xi^{\mu} \neq 0$$

for all real $\xi \neq 0$. It is strongly elliptic there if there is a complex constant γ such that $\operatorname{Re} \gamma P(x, \xi) \neq 0$ for $\xi \neq 0$. Let G be a bounded domain in n-space and let f and u_0 be smooth complex functions defined in G. The Dirichlet problem (A, f, u_0) is to find a complex function u such that Au = f in G and all derivatives of $u - u_0$ of order < m/2 vanish on the boundary \dot{G} of G. Gårding [2] and others have shown that if \dot{G} and the coefficients a_μ are sufficiently smooth, a unique solution exists provided A is strongly elliptic and $a_{00}..._0$ is large enough.

In this paper we extend the existence theory to include any elliptic operator for n>2 and to operators satisfying a root condition [5] if n=2. Such operators will be called properly elliptic. For m=2 all properly elliptic operators are strongly elliptic, but this is not the case for higher orders. For example, the operator corresponding to

$$P(x,\xi) = \xi_1^4 + \xi_2^4 - \xi_3^4 + i(\xi_1^2 + \xi_2^2)\xi_3^2$$

is not strongly elliptic.

THEOREM. Let A be properly elliptic and denote its formal adjoint by A^* . Assume that the Dirichlet problem $(A^*, 0, 0)$ has only the solution

 $u \equiv 0$. Then for any f and u_0 sufficiently smooth the Dirichlet problem (A, f, u_0) has a solution.

Sketch of Proof. Without loss of generality, we may assume $u_0 \equiv 0$ and for convenience we assume $f \in C^{\infty}(\overline{G})$. Set

$$(v, w)_s = \sum_{|u| \leq s} \int_G D^{\mu}v \overline{D^{\mu}w} dx \qquad ||v||_s^2 = (v, v)_s$$

and let V be the set of all $v \in C^{\infty}(\overline{G})$ having all derivatives of order < m/2 vanishing on \dot{G} . Complete V with respect to the norm $\|\cdot\|_m$ and call the resulting Hilbert space H. From the assumptions on A and A^* it follows [5] that

$$|c^{-1}||v||_m \le ||A^*v||_0 \le c||v||_m$$
 for all $v \in H$.

Hence, by the Lax-Milgram lemma [3] there is a $g \in H$ such that

$$(A^*g, A^*v)_0 = (f, v)_0$$
 for all $v \in H$.

Applying the regularity theory of Nirenberg [4] and Browder [1], we see that $g \in C^{\infty}(\overline{G})$. Hence AA * g = f in G. Set $u = A * g \in C^{\infty}(\overline{G})$. Then Au = f in G and

$$(u, A^*v)_0 = (Au, v)_0 \qquad \text{for all } v \in H.$$

This last equality implies $u \in H$. The proof is thus complete.

The foregoing method can also be applied to systems of equations and to general boundary problems which cover A in the sense of [6].

REFERENCES

- 1. F. E. Browder, On the regularity properties of solutions of elliptic differential equations, Comm. Pure Appl. Math. vol. 9 (1956) pp. 351-361.
- 2. Lars Gårding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. vol. 1 (1953) pp. 55-72.
- 3. P. D. Lax and A. N. Milgram, *Parabolic equations*, Annals of Mathematical Studies, no. 33, 1954, pp. 167-190.
- 4. Louis Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. vol. 8 (1955) pp. 648-674.
- 5. Martin Schechter, On estimating elliptic partial differential operators in the L_2 norm, Amer. J. Math. vol. 79 (1957) pp. 431-443.
- 6. ——, Integral inequalities for partial differential operators and functions satisfying general boundary conditions, Comm. Pure Appl. Math. to appear in 1959.

NEW YORK UNIVERSITY