
SOME PROBLEMS ON 3-DIMENSIONAL MANIFOLDS 

C. D. PAPAKYRIAKOPOULOS 

I. GENERALITIES 

1. Introduction. One of the well-known problems in Topology is 
the classification problem of closed ^-dimensional manifolds. 

An n-manifold (^-dimensional manifold) is a connected separable 
metric space each of whose points has a closed neighborhood homeo­
morphic to a closed fz-cell. So we consider both manifolds with bound­
ary and manifolds without boundary. A closed w-manifold is a com­
pact w-manifold without boundary. 

Classification means to define an infinite sequence of closed n-
manifolds Mi, Mi, M%, • • • ,x such that any two of these are not 
homeomorphic, but any closed w-manifold M is homeomorphic with 
one of them. We emphasize that, we do not ask to find a method to 
decide with which of the model manifolds is M homeomorphic. We 
only want to know whether M is included in this sequence. Of course 
we do not ask to find an effective procedure, because such may not 
exist. 

The classification problem was solved long ago for n = 2, i.e. for 
closed surfaces,2 [22, §§37-39, pp. 130-142]. So, as usual in Mathe­
matics, one tries to solve the problem for the next dimension n = 3, 
in the hope that he will find a general method working for any di­
mension. This is the reason we restrict ourselves from now on to the 
case n = 3. 

The classification problem has been solved not only for closed sur­
faces, but also for compact nonclosed ones [22, §40, pp. 142-144; 
10, pp. 151-158]. See also [10, p. 171, 11. 12-16]. 

We concentrate our attention on the classification problem of closed 
3-manifolds, and for the time being we do not consider the classifica­
tion problem for nonclosed 3-manifolds, because this last problem 
seems to be much more complicated, see No. 21. 

2. Generalities. As is well known, the classification problem is 
solved for n = 2 by cutting the surface along simple8 curves. So the 
question arises naturally: Can we solve the classification problem for 
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1 To define Mi means to give a model of Mi, i.e. a way of constructing Mi. 
2 Numbers in brackets refer to the bibliography at the end of the paper. 
8 I.e. without self-intersections. 
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n — Zy by cutting the closed 3-manifold along surfaces without self-inter­
sections? A close examination of this problem suggests that we have 
to face the following two problems. 

(2.1) To define a family of surfaces, possibly with self-intersections, 
having certain properties. 

(2.2) To select from the family a surface that has no self-inter­
sections f i.e. we need to prove the existence in the family of a surface 
without self-intersections. 

These are generalities, and they will be clarified in II. 

II. T H E SPHERE THEOREM, D E H N ' S LEMMA, AND THE LOOP THEOREM 

3. The sphere theorem. From now on everything will be considered 
from the semi-linear point of view, i.e. any 3-manifold will be con­
sidered with a fixed triangulation, which is permissible according to 
E. E. Moise's [13; 14] and R. H. Bing's [ l ; 2] work, any curve will 
be considered as polygonal, any surface as polyhedral, and so on. 

Let M be a 3-manifold, such that ir?,(M) 5^0. This means that there 
exist in M 2-spheres, with self-intersections (singularities), which are 
noncontractible in M. Thus a family, required by (2.1), is well de­
fined. Now in connection with (2.2) the question is: does the family 
contain a surface without self-intersections? This poses a certain 
problem, which may be called the sphere problem. 

To the best of my knowledge, the first to attempt a problem of this 
kind was H. Kneser in 1928, [ l l , p. 257]. He remarked that if 5 is a 
2-sphere (without singularities) in M, such that M—S consists of 
two components M' and ikf", then4 

(3.1) <KX(M) « A*B, 

where TTI(M') ^A and TI(M") ~B. Then he tried to prove the follow­
ing theorem, which is the converse of his remark. 

(3.2) If (3.1) holdsy then there exists a 2-sphere without singularities 
S in My such that M—S consists of two components M' and M", where 
TI(M') « i4 and in(M") « 5 . 

However his proof does not seem to be conclusive. See Nos. 12, 
IS, and especially Nos. 17 and 20. 

In 1937 appeared the paper of S. Eilenberg [5], which initiated the 
asphericity problem of knots, see No. 12. This paper inspired the 1939 
paper of J. H. C. Whitehead [28], on p. 161 of which the following 
problem or conjecture is contained. 

(3.3) A nonempty proper open connected subset U of the S-sphere is 

4 * means free product. 
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aspherical, if and only if any 2-sphere in U bounds a 3-cell belonging to 
U. 

I t was precisely this conjecture which stimulated the present au­
thor to prove during the summer of 1956 the following sphere theorem 
[18, p. 1]. 

(3.4) Let M be an orientable 3-manifold, compact or not, with bound-
ary which may be empty, such that ir^M) 9^0, and which can be semi-
linearly imbedded in a 3-manifold N, having the following property : the 
commutator quotient group of any nontrivial {but not necessarily proper) 
finitely generated subgroup of iri{N) has an element of infinite order 
{n.b. in particular this holds if Ti{N) = 1). Then there exists a 2-sphere 
S semi-linearly imbedded in M, such that6 SgkO in M. 

In October 1957 J. W. Milnor proved a more general sphere theo­
rem. Finally in December 1957 J. H. C. Whitehead [29] proved the 
sphere theorem in complete generality. 

SPHERE THEOREM. Let M be an orientable 3-manifold, compact or not, 
with boundary which may be empty, such that W2{M)?*0. Then there 
exists a 2-sphere S semi-linearly imbedded in M, such that SqkO in M. 

Both Milnor's and Whitehead's proofs are modifications of the 
present author's proof [18, §5, pp. 15-18]. The sphere theorem does 
not hold generally for nonorientable 3-manifolds as the example6 

ptXS1 shows. 

4. Dehn's lemma. Parallel to the sphere theorem lies another prop­
osition known as Dehn's lemma. 

D E H N ' S LEMMA. Let M be a 3-manifold, compact or not, with bound­
ary which may be empty, and in M let D be a 2-cell with self-inter sections 
{singularities), having as boundary the simple% closed polygonal curve C, 
and such that there exists a closed neighborhood of C in D which is an 
annulus {i.e. no point of C is singular). Then there exists a 2-cell Do with 
boundary C, semi-linearly imbedded in M. 

Dehn's lemma was included in a 1910 paper of M. Dehn [4, p. 147], 
but in 1928 H. Kneser [ i l , p. 260], observed that Dehn's proof con­
tained a serious gap. In 1935 and 1938 appeared two papers by I. 
Johansson [8; 9] , on Dehn's lemma. In the second one, p. 659, he 
proved that, if Dehn's lemma holds for all orientable 3-manifolds, it 
then holds for all nonorientable ones. During the summer of 1956 the 
present author proved that Dehn's lemma holds for all orientable 3-
manifolds [18, §4, pp. 13-15]. 

5 ~ means homotopic to. 
6 P2 is the real projective plane, and S1 is the 1-sphere. 
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In a forthcoming paper of Arnold S. Shapiro and J. H. C. White­
head [30] a simplified proof of Dehn's lemma is given. There, is 
proved also an extension of the lemma, for Dehn discs with more than 
one boundary curve, see [18, p. 24, Problem 2]. 

5. The loop theorem. Another proposition related to the sphere 
theorem and Dehn's lemma is the following 

LOOP THEOREM. Let M be a 3-manifold which may or may not be 
compact, with boundary N formed by a number ( > 0 , ^ «>) of surf aces 
closed or not. Let L be a loop belonging to an open set U of an orientable 
component N' of N, such that L~0 in M and qkO on N. Then there 
exists a simplez loop L0 in U, such that L0~0 in M and ç&0 on N. 

This theorem was contained implicitly in the 1928 paper of H. 
Kneser mentioned twice above. Actually, the "Hilfssatz" [ l l , p. 248] 
has to be split into the loop theorem and Dehn's lemma. We would 
like to emphasize that the loop theorem is independent of Dehn's 
lemma, i.e. it does not follow from Dehn's lemma, and moreover its 
proof has its own difficulties. I t seems that J. H. C. Whitehead was 
in 1937 the first to observe this splitting. Actually, in [27, p. 65], the 
following lemma is proved, which is a special case of the loop theorem. 

(5.1) Let us suppose that M, N, N' are as in the loop theorem, and 
let L be a simple1 loop on N' such that Z>~0 in M, where s is a natural 
number. Then L ~ 0 in M. 

Finally this author proved the loop theorem in complete generality 
[16, pp. 285-293]. However, I reproved (5.1) and I had to make 
use of it in my proof. This is Lemma (9.3), p. 287. 

6. Relation between the sphere theorem, Dehn's lemma, and the 
loop theorem. Looking more closely at these three propositions we 
recognize that they are of the same kind, namely: given a certain geo­
metric entity with certain properties, to find1 a simplest possible geo­
metric entity with the same properties. This needs some explanation. 

In the sphere theorem the geometric entity is a 2-sphere with singu­
larities which lies in M, and its property is to be noncontractible in 
M. From this we construct a 2-sphere (without singularities) which 
lies in M and is noncontractible in M, i.e. we find a simplest possible 
geometric entity with the same properties. 

In Dehn's lemma the geometric entity is the 2-cell with singularities 
which lies in M, and its properties are that it has boundary C, and 
its singularities are far away from the boundary. From these we con­
struct a 2-cell (without singularities) which lies in M and has bound-

To find means here to construct or prove the existence of. 
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ary C, i.e. we find a simplest possible geometric entity with the same 
properties. 

In the loop theorem the geometric entity is the loop L which lies 
in [7, and its properties are that it is ~ 0 in M and QkO on N. From 
this we construct a simple3 loop which lies in U, is c^O in M and qkO 
on N, i.e. we find a simplest possible geometric entity with the same 
properties. 

So actually the sphere theorem, Dehn's lemma, and the loop theo­
rem are of the same kind. However, their relation is deeper, and this 
will be clarified in III , where we will give brief sketches of their 
proofs. 

III . SKETCH OF PROOFS 

7. Proof of the loop theorem. Let us consider the following diagram 

SDfi'DL 

(7.1) pi i i 

MDN'DL 

where p: M—>M is the universal covering of M, fit' is a component 
of8 bdM lying over N', and L is a loop on fit' covering L just once. 
This is possible, because L ~ 0 in M. I t is no loss of generality to sup­
pose that, L has only "double" points, where two branches of L are 
crossing each other. Let d(L) and d(L) be the number of double 
points of L and L respectively. Then 

(7.2) d(L) = d(L) + y E d(L, TL) 

where the sum ranges over all covering translations r of p: M-+M, 
which are different from the identity, and d(L, TL) is the number of 
common points of L and rZ. We easily obtain from L a new loop V 
lying in [/, ~ 0 in M, and qkO on N, such that 

(7.3) <*(£') = 0 

where V is a loop on fit' covering U just once. 
From now on begin the main difficulties of the problem. We have 

to use the fact that fit' can be topologically imbedded in a 2-sphere, 
and then we have to make a detailed study comparing the position 
of L' with that of TL'. This is a rather delicate argument, and there­
fore we refer the reader to [16, pp. 285-293]. 

We would like to observe, that J. H. C. Whitehead did not use 

b d = boundary. 
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covering spaces in his proof of (5.1), and perhaps therefore he ob­
tained only a special case of the loop theorem. 

8. Proof of Dehn's lemma. Having observed in No. 6 that the loop 
theorem and Dehn's lemma are problems of the same kind, and hav­
ing proved the loop theorem, the question arises naturally: can we 
use the same method, or at least a modification of it, to prove Dehn's 
lemma? The answer is affirmative and we are now going to explain 
this method. 

Performing certain rather elementary geometric operations, we 
may suppose that the only singularities of the Dehn disc9 D are 
double curves, along which two sheets cross, and triple points at which 
three sheets cut [18, Nos. 2-3, pp. 3-6]. Let d(D) and t(D) be the 
number of double curves and triple points of D, respectively. The 
ordered pair (t(D), d{D)) will serve as complexity of D. 

Let us consider the following diagram 

MiDViD Dx 

(8.1) fc\ 

M DV D D 

where D is the Dehn disc9 with boundary C, F is a prismatic neigh­
borhood of D in M, and pi : Mi—* V is the universal covering of V. 
Let Z>i be a Dehn disc in Mi covering D just once. Then, see [17, 
formula on p. 171], 

(8.2) d(D) = d(Di) + — X d(Du TDI) 
Id 

where the sum ranges over all covering translations r oî pi: Mi—>V, 
which are different from the identity, and d(Du rD{) is the number 
of common closed curves of Di and TDI. Thus the following holds. 

(8.3) d(Di) Sd(D), and the equality holds if and only if F i s simply 
connected. 

Let Vi be a prismatic neighborhood of Di in Mi. So we have the 
diagram (8.1). Comparing (7.1) and (7.2) with (8.1) and (8.2), we 
see the differences and the similarities. 

We can repeat again and again the above construction, and so we 
obtain the following diagram 

9 A Dehn disc means a 2-cell whose singularities, if any, are far away from the 
boundary. 
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Mi D Vx D Di 

\ I 
M D V D D 

called a tower over -DC-M^ and the sequence 
<*(£>) è d(Dx) ^ • - • ^ <Z(Z>W) è • • • è O, 

by (8.3). Thus by (8.3), there is a number10 n^O, such that d(D{) 
>d(Di+i) for i < ^ , and d{D3) = d(Dj+i) for j^n; i.e. the tower is 
trivial after the crucial value n, which is called the height of the tower. 

We now have to consider the following two cases d(Dn)>0 and 
d(Dn)—0. In both cases performing certain operations at the nth 
level, and projecting by the map pi • • • pn we obtain a new Dehn 
disc9 D' in Mf with boundary C, which is simpler than D. This means 
that either t{D') <t{D)y or if t(D') =t(D) then d(D') <d(D). 

We would like to emphasize, that the case d(Dn)>0 is rather 
geometric [18, No. 16, pp. 14-15], and the case d(Dw)=0 is rather 
algebraic [18, No. 17, p. 1 5 ] , n and actually here appears the main 
difficulty of Dehn's lemma. Compare this with the remarks after 
(7.3). 

In the same way we obtain from D' a new Dehn disc D" in M, with 
boundary C, which is simpler than D', and so on. Finally, after a 
finite number of repetitions of this construction, we obtain a Dehn 
disc D (m) in M, with boundary C and complexity (0, 0). This means 
that DM has neither triple points nor double lines. Hence D (m) is 
the required 2-cell DQ, without singularities. 

Arnold S. Shapiro suggested considering 2-sheeted coverings, in­
stead of universal ones, in the construction of the tower [18, p. 24, 
Problem 5]. 

In a forthcoming paper of Arnold S. Shapiro and J. H. C. White­
head [30] a simplified proof of Dehn's lemma is given using 2-sheeted 

™Mo = M, Vo=F, D0=D. 
11 That No. 17 is based on Nos. 11-12, pp. 11-13. 
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coverings. There, is proved also an extension of the lemma, for Dehn 
discs with more than one boundary curve, see [18, p. 24, Problem 2]. 

9. Proof of the sphere theorem. Let us consider first my proof of 
(3.4), [18, §5, pp. 15-18]. The method is similar to that of Dehn's 
lemma explained in No. 8. Namely, performing certain rather ele­
mentary geometric constructions, we may suppose that the only 
singularities of a 2-sphere with self-intersections D are double curves 
and triple points, whose number is d(D) and t(D) respectively. We 
consider again the diagram (8.1), where now D means a 2-sphere 
with singularities, such that DgkO in M. Then formula (8.2) and 
proposition (8.3) hold. We construct the tower (8.4), consider the 
height n^O of it, and we have again the two cases d(Dn)> or =0 . 
Performing certain operations at the nth level and projecting by the 
map pi • • • pn we obtain a new 2-sphere with singularities Df in M, 
such that D'qkO in M, and which is simpler than D, as in the proof 
of Dehn's lemma. However, here we have to be especially careful to 
secure the condition D'qkti in M. This can be done using Poincaré 
duality and standard Hurewicz theorems [18, p. 17, Lemma (22.5)]. 
In the same way we obtain from D' a new 2-sphere with singularities 
D" in M, such that D"qk0 in M, which is simpler than D' and so on. 
Finally, after a finite number of repetitions of this construction, we 
obtain a 2-sphere with singularities Z>(m) in AT, such that D^m)gk0 in 
M, and which has complexity (0, 0). This means that P ( w ) has neither 
triple points nor double lines. Hence D (m) is the required 2-sphere 5, 
without singularities. 

Theorem (3.4) contains a rather restrictive condition. Namely, the 
condition of the imbeddability of M in N, which has a certain property. 
This condition is used only in the special case where the height of the 
tower (8.4) is » = 1, and d(I>i)=0, [18, p. 18, 11. 1-14]. 

In December 1957 J. H. C. Whitehead freed the theorem from this 
condition, and so we now have the sphere theorem in complete gen­
erality. He constructs a tower (8.4) in the following way. Let us con­
sider the diagram (8.1) as defined above. Let r be a covering trans­
lation of pi: Mi-*V different from the identity, and such that rD\ 
meets Di. Then in (8.4), the covering p\\ M\-*V is not the universal 
one as in our construction, but a covering corresponding to the sub­
group of TI(V) generated by r. All coverings p{\ Mr-»W-i, i = 2, • • • , 
n, axe universal as in our construction. Finally he stops the tower at 
a height w^O, such that 7Ti(Fn) infinite, while we essentially stopped 
the tower at a height w^O, such that 7Ti(Fn) = l. These are White­
head's modifications, and after that everything works smoothly fol­
lowing our method. 
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I t was suggested by R. H. Fox to use also other coverings, instead 
of universal ones [18, p. 24, Problem 5]. However Whitehead showed 
the importance of the nonuniversal coverings. 

IV. APPLICATIONS 

10. Applications of the loop theorem. As it is well-known any closed 
orientable 3-manifold can be obtained from two solid tori of the same 
genus ( ^ 0 ) by matching their boundaries [22, p. 219, Satz]. 

Solid torus of genus12 h ( §; 0) means a 3-cell with h solid handles. 
This is a compact orientable 3-manifold M, whose boundary N is an 
orientable surface of genus h, such that TTI(M, N) = 1. The importance 
of the solid tori suggests the desirability of obtaining a topological 
characterization of them; and, according to the above remark, the 
following conjecture arises naturally. 

(10.1) Let M be a compact 3-manifold, whose boundary N is an 
orientable surface of genus h ( è 0 ) , such that Ti(M, N) = 1. Then M is a 
solid torus of genus h. 

We observe that an immediate consequence, of the special case 
h = 0, of (10.1) is the 

C E L L CONJECTURE. A simply connected compact 3-manifold, whose 
boundary is a 2-sphere, is a 3-cell. 

This is equivalent to the well-known 
PoiNCARÉ CONJECTURE. A simply connected closed 3-manifold is a 

3-sphere. 
Some years ago I was working on Poincaré conjecture, and I tried 

to prove it by proving (10.1). But I failed, and I may say that I am 
now convinced that this is not the way to attack Poincaré conjecture. 
However, the loop theorem, Dehn's lemma, Poincaré conjecture, and 
some results from algebraic topology imply (10.1), see [16, p. 297, 
Theorem (19.1)]. This was the reason I worked on the loop theorem, 
whose proof led me to the proof of Dehn's lemma and the sphere 
theorem. 

Another application of the loop theorem can be made in proving 
H. Kneser's "Hilfssatz" [ i l , p. 248]. For other applications of the 
loop theorem see [19, §5, pp. 91-92], and [16, pp. 298-299]. 

11. Applications of Dehn's lemma. Dehn's lemma was introduced 
by M. Dehn in 1910 to prove an algebraic characterization of the un­
knotted knots in the 3-sphere S8. 

By a knot K in Sz we mean a simple8 closed polygonal curve in Sz. 
We say tha t K is unknotted if it is the boundary of a 2-cell without 
self-intersections in S8. If K is unknotted then TTI(SZ—K) is free 

12 Henkelkörper vom Geschlechte h [22, p. 219]. 
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cyclic, and the problem arises naturally: ifiri(Sz — K) is free cyclic, 
is K unknotted') 

Dehn [4, p. 158, Satz 2], used his lemma to prove that this problem 
has an affirmative answer, and this is the reason he introduced it. 

Another application of Dehn's lemma is made in proving H, Knes-
er's "Hilfssatz"13 [ l l , p. 248]. For another application of Dehn's 
lemma see [19, §5, pp. 91-92]. 

However, in my opinion, the greatest importance of Dehn's lemma 
lies in the fact that it may possibly be used as a tool in proving 
Poincaré conjecture. Of course this is a personal opinion, and it need 
not be accepted up to the moment when there will be a proof of Poin­
caré conjecture based on Dehn's lemma. I would only like to observe 
that Dehn's lemma is not going to be enough to prove Poincaré 
conjecture, and that some other things will have to be used too. 

12. Applications of the sphere theorem. As we mentioned in No. 3, 
Eilenberg's paper [5] initiated the asphericity problem of knots, 
namely : if K is a knot in 53, then Sz — K is aspherical. This follows 
easily from the sphere theorem. Moreover the sphere theorem implies 
Whitehead's conjecture (3.3), see [18, no. 26, pp. 18-19]. Another 
application of the sphere theorem is made in proving the following 
statement which was known as Hopf's conjecture. The fundamental 
group of any open connected subset of the 3-sphere> has no element of finite 
order. In [18, §7, pp. 20-23], we prove a more general theorem, using 
the sphere theorem. 

In 1948 G. Higman [7, p. 117, No. 1 ], observed that if Kh • • • , Km 

( w ^ 2 ) are disjoint knots in 53, and if 
(12.1) there is a 2-sphere S in Sz such that K\, • • • , Kr belong to one 

component of Sz — S, and Kr+i, • • • , Km belong to the other component 
(1 ^r<m) 
then 

(12.2) w2(S* - K) ^ 0, where K = Kx U • • • \J Km, 

(12.3) 7Ti(53 - K) « A * £,4 where A and B ^ 1. 

Then he proved that (12.3) implies (12.2). Actually his intention was 
to prove (12.1), which is a much stronger statement. This is proved in 
[18, No. 27, p. 19] and the proof is based on the sphere theorem. 

We would like to emphasize, that Higman's remark and problem 

13 Several times we have mentioned Kneser's lemma, but we are not going to state 
it, because it is a rather complicated statement, and we are not going to give any 
application of it in the present paper. However, we had to mention it, at least for its 
historical significance. 
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are special cases of Kneser's remark and problem (3.2), see also No. 
17. 

Other applications of the sphere theorem will be given in V. 

V. RESULTS ON THE CLASSIFICATION PROBLEM 

13. This paper began with the classification problem, it then passed 
to the three theorems, namely, the sphere theorem, Dehn's lemma, 
and the loop theorem. Let us now see how far we have gone toward 
the solution of the classification problem for closed 3-manifolds, using 
the sphere theorem. Throughout this section we will consider orien­
table closed 3-manifolds only. 

14. Milnor's results. In October 1957 J. W. Milnor [12] obtained 
some results modulo Poincarê conjecture. To be able to state these 
results we need some definitions. 

Let M', M" be two oriented closed 3-manifolds, and let E', E" be 
two open 3-cells in M', M" respectively. Matching the boundaries of 
M! —E' and M" —E", in the proper way, we obtain a new oriented 
closed 3-manifold M, called the composition1* of M' and ikf", and 
denoted by 

M = M1' # M". 

Homotopy sphere means a simply connected closed 3-manifold ; if the 
Poincarê conjecture is true this is a 3-sphere. Two oriented closed 
3-manifolds Mi and Mi are called congruent if there exist oriented 
homotopy spheres15 Ni and N2, such that Mi # Ni and M2 # N2 are 
isomorphic (i.e. there is an orientation preserving homeomorphism). 
An oriented closed 3-manifold M, which is not a homotopy sphere, is 
called decomposable if M is congruent to M' # M", where neither M' 
nor M" is a homotopy sphere, ikf is called indecomposable if it is not de­
composable. Milnor's results are the following. 

(14.1) Every oriented closed 3-manifold, which is not a homotopy 
sphere, is isomorphic to a composition of indecomposable 3-manifolds, 
which are unique up to order and congruence. 

(14.2) Every indecomposable 3-manifold is either congruent to an 
oriented S1 X S2, or is aspherical, or has a nontrivial finite fundamental 
group. 

Of course the 3-manifolds congruent to an oriented SlXS2 are 
completely defined up to homeomorphism, if Poincarê conjecture 

14 Summenbildung [22, p. 218, Problem 3]. 
15 Here is a place where Poincarê conjecture comes into play. Actually we should 

have called Mi and M2 congruent (modulo the class of homotopy spheres), but we 
dropped the parenthesis for abbreviation. 
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holds. However the problem is: what are the orientable closed 3-mani­
folds, which are either aspherical, or their fundamental group is non-
trivial and finite! 

Milnor obtains his results using the sphere theorem. 

15. 3-spheres with handles. We are now going to explain some re­
sults due to this author [18, §8, pp. 23-24]. 

Let us consider two solid tori of the same genus16h>0. Identifying 
their boundaries in various ways we obtain a denumerable collection 
of orientable closed 3-manifolds, see No. 10. In this collection we have 
two extreme identifications. Namely, the identification can be such 
that the result is a 3-sphere, or such that the result is the duplication11 

Mh of the solid torus of genus h. It is easily seen that, Mh is the com­
position of h copies of SlXS2. Moreover Mh can also be obtained in 
the following way: we consider a 3-sphere 58, and 2h disjoint open 
3-cells in it. We then delete the interior of these 3-cells, and identify 
the boundary of the ith. 3-cell with that of the (i-\-h)-th 3-cell, 
i = l, • • • , h, in such a way that the resulting closed 3-manifold is 
orientable. This construction justifies the name 3-sphere with h han­
dles given to Mh. 

We observe that Ti(Mh) is a free group on h (>0) free generators. 
The question arises naturally: if the fundamental group of an orientable 
closed 3-manifold is a free group on h ( > 0) free generators is then this a 
3-sphere with h handles! In my paper [18, §8, pp. 23-24] an affirma­
tive answer is given to this problem, but only modulo Poincarê con­
jecture] the proof is based on the sphere theorem, see No. 19. 

Let us now consider the following diagram 

.• • 
.•• : 

(15.1) ..-* : 

...if» 
. • • • • ' 

. . • • 

* « • • 

s«.v.-;.V Mi 

where the dots connecting 58 and Mr» fe = l, 2, • • • , represent the 
orientable closed 3-manifolds we obtain matching the boundaries of 
two solid tori of genus h, in a way different from the two extreme 
ways that give us Sz and Mh. The 3-manifolds S8, Mi, M2, • • • , 

16 The case ft—0 will give us the 3-sphere. 
17 Verdoppelung [22, p. 129]. 
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Mh, • • • are characterized up to homeomorphism by their funda­
mental groups, modulo Poincarê conjecture. The 3-manifolds repre­
sented by the horizontal dots are the lens spaces. They have been 
classified since 1936 by K. Reidemeister [20 ] modulo the Hauptve-
mutung, proved in 1952 by E. E. Moise [13, p. 96, Theorem 4]. 
Another classification of the lens spaces was given in 1949 by R. H. 
Fox [6, p. 455, 11. 22-29], using a certain combinatorial invariant of 
his own, which was proved by E. J. Brody [3], without use of the 
Hauptvermutung, to be a topological invariant. 

Thus, the 3-manifolds lying on the boundary of the diagram (15.1) 
are classified, and characterized up to homeomorphism (by algebraic 
tools), modulo Poincarê conjecture. Hence the problem is: what are the 
3-manifolds lying in the interior of the diagram (15.1), and how can they 
be characterized up to homeomorphism (by algebraic tools) ? 

We would like to point out that, if M is an orientable closed 3-
manifold, such that TTI(M) is a free group on h~h'+h" free genera­
tors, then there is a 2-sphere S in M, such that M—S consists of two 
components M' and M", where 7Ti(Af') and TTI(M") are free groups 
on h! and h" free generators respectively.18 This means that in this 
case we can solve Kneser's problem (3.2), see also No. 17. 

16. The genus of a 3-manifold. An orientable closed 3-manifold 
may appear on several of the dotted lines19 SzMh of the diagram 
(15.1). The smallest of those numbers h is called the genus g of the 
3-manifold, i.e. a 3-manifold is of genus g if it can be obtained by 
matching the boundaries of two solid tori of genus g, but cannot be 
obtained by matching the boundaries of two solid tori of genus <g, 
[23, p. 90, No. 5]. 

The problem of the genus (i.e. to determine the genus) of an orienta­
ble closed 3-manifold seems to be of importance for the classification 
problem. This is an unsolved problem, and we can solve this problem 
only, modulo Poincarê conjecture, in the special case where the funda­
mental group of the 3-manifold is a free group on fc^O free gener­
ators. Actually by No. 15, the 3-manifold is a 3-sphere with h handles 
if h>0, and so its genus is h. However if h = 0, the 3-manifold is 
simply connected, and here is a place where the Poincarê conjecture 
comes into play. Indeed, Poincarê conjecture asserts nothing else 
but that any simply connected closed 3-manifold has genus zero. 

Another related problem is the following uniqueness problem. 
(16.1) Does any orientable closed 3-manifold appear more than once 

18 This can easily be proved, using the method explained in [18, §8, pp. 23-24]. 
19 The end points S3 and Mh included. 
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on a dotted line19 SzMh of the diagram (15.1)? 
Let us look at this problem more closely. Let M be an orientable 

closed 3-manifold, and let F' and Fn be two orientable closed surfaces 
of the same genus fe^O in M, such that M — Fr and M — Fn consist 
of two components, the closure of each one of which is a solid torus 
of genus h. Then the uniqueness problem is the following. 

(16.2) Does there exist a homeomorphism of M onto itself carrying 
F' onto F"? 

We can also pose a stronger problem. 
(16.3) Does there exist an isotopy of M into itself carrying F' onto 

F"? 
Of course if h = 0 the answer to both (16.2) and (16.3) is affirmative, 

see D. E. Sanderson [21 ]. But what happens if h>0? It seems that, 
not even the following special case M = SZ is known. 

(16.4) Let F' and F" be two closed surfaces of the same positive genus 
in 53 , such that the closure of each one of the components of Sz — F' and 
Sz — F,f is a solid torus. Does there exist an isotopy of Sz into itself carry­
ing F' onto Fn', or at least does there exist a homeomorphism of Sz onto 
itself carrying F' onto F" ? 

17. Kneser's method. We would like to mention here the method 
developed in the 1928 paper of Kneser [ l l , No. 4, pp. 252-256], be­
cause it seems to me to be of importance. However we have to ob­
serve that it contains gaps at some crucial places so that the reader 
of it has to be especially careful. 

Let us mention once again the problem (3.2), which we met in Nos. 
12 and 15, in conjunction with the Higman's problem and the 3-
spheres with handles respectively. We call this problem Kneser's 
conjecture, and it would be desirable to have a proof of it. 

KNESER'S CONJECTURE. Let M be an orientable 3-manifold, such 
that* 

(17.1) 7ri(ikf) « A*B. 

Then there exist a 2-sphere without singularities S in M, such that 
M—S consists of two components M' and M", where Ti(M')^A and 
in(M")~B. 

See also No. 20. 
VI. REMARKS 

18. Poincaré conjecture and classification. We would like to em­
phasize the importance of Poincaré conjecture for the classification 
problem of orientable closed 3-manifolds. This is obvious from Nos. 
14-16, where the central rôle of this conjecture can be recognized. 
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We now observe that using the sphere theorem we obtained some 
results on the classification problem of orientable closed 3-manifolds. 
Possibly, using instead of 2-spheres orientable closed surfaces of 
genus > 0 in the 3-manifolds, we might obtain additional information 
on the classification problem. See [18, §9, p. 24, Problem 3]. 

19. Geometric problems and algebraic techniques. I t seems that 
the following is true. 

(19.1) To solve a geometric problem we need to perform certain 
geometric operations. However these operations will be possible only 
under certain conditions. To prove the existence of these conditions, 
we often need to use algebraic techniques and results. 

This needs some explanation. For this reason let us look closely 
at some of the places in [18], and at the history of some of the prob­
lems contained in [l8]. 

To prove his lemma [4, §3, pp. 147-153], Dehn introduced in 1910 
a certain geometric operation, which he called Umschaltung (cut) 
[18, No. 2, p. 3] . Using the cuts carelessly,20 he thought that he had 
proved his lemma. However what he actually did was, that from the 
2-cell with singularities, whose genus is zero, he obtained a surface 
with fewer singularities, but whose genus might be zero or one. So, 
though he reduced the singularities, he might have increased the 
genus. This is a typical mistake in this kind of problem. Namely, to 
reduce some kind of difficulty, and at the same time to insert a worse 
difficulty. 

I. Johansson, studying diagrams, i.e. the inverse images of Dehn 
discs,9 during the thirties, arrived at the conclusion, that Dehn1 s 
lemma might be proved possibly, by conveniently selected cuts [8, p. 314, 
11. 18-20]. His conclusion is justified by this author's proof, for the 
case of an orientable 3-manifold. 

Actually, looking closer at the proof of Dehn's lemma in [18], 
we observe that we actually construct the desired disc [18, p. 2, 11. 
34-38], and that the construction is carried out by means of successive 
cuts. Let us now analyze our proof, and point out the delicate points. 

Using covering spaces of covering spaces (the tower) No. 8, we ar­
rive at a crucial value n (the height) where the process actually stops. 
Obviously, here something has to be brought into play, and this is a 
theorem due to H. Seifert [22, p. 223, Satz IV], that the first betti 
number, of a compact 3-manifold with boundary, is at least equal to the 
sum of the genera of the boundary surfaces. This is a key theorem for 

20 Actually that time was the early days of Topology, and the difficulties of its 
problems had not been generally realized. 
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3-manifolds, relating an algebraic notion (the betti number) with a 
geometric one (the genus). Seifert's theorem implies the following, 
see diagram (8.4). 

(19.2) All boundary surfaces of Vn are 2-spheres. 
This is really decisive, as we shall see below. We now have to dis­

tinguish the following two cases d(Dn) > or = 0 , see No. 8. 
In case d(Dn)>0, see [18, No. 16, pp. 14-15], the process performed 

at the nth level is based on (19.2), and its projection by the map 
p\ - - • pn is essentially a certain finite number of cuts of the Dehn 
disc, which do not increase the genus of it, but decrease the complexity. 
But, how could we find the cuts needed, without the use of covering 
spaces and (19.2)? 

In case d(Dn) = 0 the above process cannot be applied any more. 
So some new process has to be found. The intuition suggests that 
there should exist a double curve on the Dehn disc D, which is a 
simple* curve. This actually holds, and the proof of it is rather 
algebraic, see [18, Nos. 11-12, pp. 11-13]. We emphasize that this is 
the most delicate part of the proof. After the proof of the existence of 
such a curve, things are easy. In fact we perform a cut of the Dehn 
disc D, along that curve, and we obtain a new Dehn disc with less 
complexity. The cut along a "simple" double curve is not dangerous, 
i.e. it does not increase the genus of the surface. This is the only case 
where we can apply Dehn's process, without any danger. 

Looking back we see that the main difficulty of the problem was to 
prove the existence of nondangerous cuts, and to prove this existence 
we used some algebraic results and techniques, at some crucial places. 
The above justifies (19.1). 

We can have analogous remarks and conclusions, analyzing the 
proof of the sphere theorem. However, the geometric operations 
needed here are the cuts and some carefully performed deformations. 
We have to keep in mind that we need the additional condition, that 
the 2-sphere is not homotopic to zero in the 3-manifold. 

We now turn to an analysis of the proof of Theorem (32.1), [18, 
p. 23]. This theorem asserts that, if Poincarê conjecture is true, then 
any orientable closed 3-manifold, whose fundamental group is a free 
group on h(^Q) free generators, is a 3-sphere with h handles. The proof 
is by induction on h, and makes use of the sphere theorem. However, 
to be able to apply the sphere theorem we need to prove that ^ T ^ O . 
This is done by using a theorem due to E. Specker [24, p. 325, Satz 
VI] . The proof of this last theorem is based on the first part of 
Specker's paper, which makes use of the theories of B. Eckmann, 
H. Freudenthal, H. Hopf, W. Hurewicz, and others. It is difficult to 



1958] SOME PROBLEMS ON 3-DIMENSIONAL MANIFOLDS 333 

see how we could go through, without the knowledge of those alge­
braic topological theories. A final remark is the following: in the proof 
of the above theorem, the induction starts with h = 1, and the theorem 
for h = 0 is Poincarê conjecture. Once again we see the importance of 
this conjecture. 

We hope that the above explanations clarify and justify (19.1). 

20. Kneser's conjecture. At several places in this paper we met 
Kneser's conjecture, see Nos. 3, 12, IS, and especially No. 17. Let us 
now look closer at the proof of Higman's problem, which is a special 
case of Kneser's conjecture as was observed in No. 12. We would like 
to prove that (12.3) implies (12.1), and we proved this by proving 
first that (12.3) implies (12.2), and secondly that (12.2) implies 
(12.1). The first was proved by G. Higman [7, p. 122, Theorem 2], 
using algebraic techniques, and the second was proved by this author 
using the sphere theorem [18, No. 27, p. 19]. This suggests that the 
gap between (17.1) and the conclusion of Kneser's conjecture is so 
great, that it has to be factored, and we first have to prove that 
(17.1) implies 7r27^0, and then that 7r23^0 implies the desired conclu­
sions. I t seems that the first step has to be proved by algebraic topo­
logical techniques, and the second one by using the sphere theorem 
and something more, because the sphere theorem is not enough to 
provide us with the conclusions of Kneser's conjecture. Thinking 
now that the algebraic topological techniques were rather unde­
veloped in 1928, we easily conclude that it was rather hopeless, to 
expect to have a satisfactory proof of this strong statement at that 
time. 

21. Nonclosed 3-manifolds. I t is known that any simply connected 
open21 surface is an open 2-cell [22, p. 320, Remark 26]. However such 
a theorem does not hold for 3-dimensions. In 1935 J. H. C. Whitehead 
[25; 26] constructed an open 3-manifold which has the homotopy type 
of an open 3-cell,22 but which is not an open 3-cell, [15, p. 19, Theorem 
3]. This example is enough to indicate how complicated things are 
for 3-manifolds if we drop compactness. The example also indicates, 
that we do not have the analogue of Poincarê conjecture for open 3-
manifolds. 

As far as the 3-manifolds with boundary, compact or not, are con­
cerned, we restrict ourselves to the consideration of the following 
special case. Let X b e a knot in Sz, and let T be a small tube around 

21 Open means noncompact and without boundary. 
22 It has also the additional property, that any 2-sphere (without singularities) 

in it bounds a 3-cell (without singularities) in it. 
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K. Then the closure of Sz — T is a compact 3-manifold MR whose 
boundary is the same as that of T. The classification of the MRS is 
equivalent to the classification of the knots in S3, and this is supposed 
to be a very difficult problem. We now observe that MR is a compact 
3-manifold with boundary, of a very special kind. Namely MR can 
be imbedded in 53 , and its boundary is a closed surface of genus one. 

From the above, one gets an idea of how difficult the classification 
problems are for nonclosed 3-manifolds. 

22. We would like to point out that the purpose of this paper is 
not to give a complete account of the knowledge of the classification 
problem of 3-manifolds. Many nice and important things have not 
been even mentioned in this paper. The purpose of this paper is only 
to explain the point of view in which this author believes. 
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