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With every locally compact topological group G there is associated
its group algebra L(G), the space of all complex Haar-integrable func-
tions on G with convolution as multiplication. Considerable work has
been done toward discovering the extent to which the algebraic
structure of L(G) determines G (see [1;2; 5]), but some very specific
questions have been left unanswered. For instance: Is the group
algebra of the circle isomorphic to that of the torus? The theorem
announced here stems from this question.

THEOREM. The group algebra of a locally compact topological group T
s isomorphic to that of the circle group C if and only if T is a direct sum
C+F, where F is a finite abelian group.

The proof leans heavily on that of Theorem 1 of [4]. In the outline
below we will mainly be concerned with pointing out the changes in
[4] which are needed to yield the stated result.

If L(T) and L(C) are isomorphic, then T is abelian, and the dual
group I' of T is homeomorphic to J, the group of all integers (the
dual group of C) [2, p. 478]. Thus I is discrete and countable, and T
is a compact abelian group with countable base.

Abelian groups will be written additively; for x&€7T and ¢ ET the
symbol (x, ¢) will stand for the value of the character ¢ at the point
x; the Haar measure on T will be denoted by .

LemMmA 1. Corresponding to every ECT with m(E) >0, there is only a
finite set of characters ¢ such that, for all x&E,

(1) [1— (9] <1

Note that (1) holds if and only if the real part of (x, ¢) exceeds
1/2. If f is the characteristic function of E and if ¢ satisfies (1), then
,f (%, qb)f(x)dx| >m(E)/2, and the lemma follows from the Bessel
inequality.

LemwMmA 2. Every infinite subset A of T' contains an infinite subset B,
such that for some x&T the inequality

(2) [1—(x,0)] 21
holds for every ¢ EB.
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This is proved by repeated application of Lemma 1.

If now ¢ is an isomorphism of L(T") onto L(C), ¥ can be extended to
an isomorphism of the measure algebras M(T) and M(C), and [2,
p. 479] there is a one-to-one mapping a of J onto I' such that the
Fourier-Stieltjes coefficients of Y(u) are

®) aww) = [ (=, a(m)du(s) (n € J, u € M(T)).

For x&ET, let e, be the measure of mass 1 which is concentrated at x,
and put p,=v¥(e;). Then ca(u.) = (—x, a(n)), and

4) Mz * by = Moty (x7 y e 7).

The mapping x—u, is thus an isomorphism of T into M(C).
The discrete parts N\, of u, also satisfy (4), and there is a mapping
B of J into I' such that

©®) ea(\) = (—x, B(n)) nel,x€T);

the lemma used in Step 5 of [4] must here be applied to CXT in
place of CXC. Since \, is discrete, ¢.(\;) is an almost periodic func-
tion on J, for each x&T. Arguing as in Step 6 of [4], we find that
there is a positive integer k2 and a set ECT with m(E) >0, such that

(6) 1= (& 0m)| <1 (n €J, x € E),

where b(n) =8(n+k) —B(n). By Lemma 1, the sequence {b(n)} has
only a finite set of values, so that the almost periodicity of { (x, b(n)) }
implies that { (x, b(n))} is actually periodic, for every x&T. A com-
pactness argument now shows that {b(n)} is itself periodic, with
period p, say. If g=£kp, it follows that

(7 Bn+ q) + B(n — q) = 28(n) (neJ).
Next we put 7,=(\;—pus) * A—z, so that

® en(rz) = 1 — (&, v(n)) neJ,z€T),

where y(n) =8(n) —a(n). Since the measures 7, are continuous,

© lim 3 e = 0 e 1.

These averages are uniformly bounded on T, so that (9) may be inte-
grated; combined with (8), this implies that y(n) =0 except possibly
on a set SCJ of density 0.

Thus if S is infinite, S contains an infinite set {#;} such that none
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of the integers mx+1, nx-+2, « « +, n+k belong to S, and by Lemma 2
there is an * & T and a subsequence of {nk } , again denoted by {nk} ,
such that | ¢s,(r2)| 2 1. A subsequence of the measures

(10) dow(8) = e="dr,(6)

then converges weakly to a singular measure o [3, p. 236] with I co(a)l
=1 but ¢,(0) =0 for all #>0. This is impossible, so that S is finite.

It follows that a=wf, where B satisfies (7) and maps J onto T,
and w is a permutation of I' which moves only a finite number of
terms; 8 maps each residue class mod g onto an arithmetic progression
in T'; hence T is finitely generated and is therefore a direct sum of a
finite set of cyclic groups; since I' is the union of a finite set of
arithmetic progressions, only one of the direct summands can be in-
finite, so that I' is a direct sum of J and a finite abelian group F.

This proves one half of the theorem. The converse may be proved
by defining

(11) a(ng + k) = (n, fi) nel,1sk=y9,

where fi, - - -, f, are the elements of F; it is easily verified that this
induces, via (3), an isomorphism of L(T) onto L(C). In fact, every
of the above form a=wf has this property, as can be seen by an
argument analogous to that on p. 50 of [4].
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