ON ISOMORPHISMS OF GROUP ALGEBRAS

BY WALTER RUDIN¹

Communicated March 7, 1958

With every locally compact topological group G there is associated its group algebra L(G), the space of all complex Haar-integrable functions on G with convolution as multiplication. Considerable work has been done toward discovering the extent to which the algebraic structure of L(G) determines G (see [1;2;5]), but some very specific questions have been left unanswered. For instance: Is the group algebra of the circle isomorphic to that of the torus? The theorem announced here stems from this question.

THEOREM. The group algebra of a locally compact topological group T is isomorphic to that of the circle group C if and only if T is a direct sum C+F, where F is a finite abelian group.

The proof leans heavily on that of Theorem 1 of [4]. In the outline below we will mainly be concerned with pointing out the changes in [4] which are needed to yield the stated result.

If L(T) and L(C) are isomorphic, then T is abelian, and the dual group Γ of T is homeomorphic to J, the group of all integers (the dual group of C) [2, p. 478]. Thus Γ is discrete and countable, and T is a compact abelian group with countable base.

Abelian groups will be written additively; for $x \in T$ and $\phi \in \Gamma$ the symbol (x, ϕ) will stand for the value of the character ϕ at the point x; the Haar measure on T will be denoted by m.

LEMMA 1. Corresponding to every $E \subset T$ with m(E) > 0, there is only a finite set of characters ϕ such that, for all $x \in E$,

(1)
$$|1-(x,\phi)| < 1.$$

Note that (1) holds if and only if the real part of (x, ϕ) exceeds 1/2. If f is the characteristic function of E and if ϕ satisfies (1), then $\left| \int_T (x, \phi) f(x) dx \right| > m(E)/2$, and the lemma follows from the Bessel inequality.

Lemma 2. Every infinite subset A of Γ contains an infinite subset B, such that for some $x \in T$ the inequality

holds for every $\phi \in B$.

¹ Research Fellow of the Alfred P. Sloan Foundation.

This is proved by repeated application of Lemma 1.

If now ψ is an isomorphism of L(T) onto L(C), ψ can be extended to an isomorphism of the measure algebras M(T) and M(C), and [2, p. 479] there is a one-to-one mapping α of J onto Γ such that the Fourier-Stieltjes coefficients of $\psi(\mu)$ are

(3)
$$c_n(\psi(\mu)) = \int_T (-x, \alpha(n)) d\mu(x) \qquad (n \in J, \mu \in M(T)).$$

For $x \in T$, let e_x be the measure of mass 1 which is concentrated at x, and put $\mu_x = \psi(e_x)$. Then $c_n(\mu_x) = (-x, \alpha(n))$, and

$$\mu_x * \mu_y = \mu_{x+y} \qquad (x, y \in T).$$

The mapping $x \rightarrow \mu_x$ is thus an isomorphism of T into M(C).

The discrete parts λ_x of μ_x also satisfy (4), and there is a mapping β of J into Γ such that

(5)
$$c_n(\lambda_x) = (-x, \beta(n)) \qquad (n \in J, x \in T);$$

the lemma used in Step 5 of [4] must here be applied to $C \times T$ in place of $C \times C$. Since λ_x is discrete, $c_n(\lambda_x)$ is an almost periodic function on J, for each $x \in T$. Arguing as in Step 6 of [4], we find that there is a positive integer k and a set $E \subset T$ with m(E) > 0, such that

(6)
$$|1-(x,b(n))| < 1$$
 $(n \in J, x \in E),$

where $b(n) = \beta(n+k) - \beta(n)$. By Lemma 1, the sequence $\{b(n)\}$ has only a finite set of values, so that the almost periodicity of $\{(x, b(n))\}$ implies that $\{(x, b(n))\}$ is actually periodic, for every $x \in T$. A compactness argument now shows that $\{b(n)\}$ is itself periodic, with period p, say. If q = kp, it follows that

(7)
$$\beta(n+q) + \beta(n-q) = 2\beta(n) \qquad (n \in J).$$

Next we put $\tau_x = (\lambda_x - \mu_x) * \lambda_{-x}$, so that

(8)
$$c_n(\tau_x) = 1 - (x, \gamma(n)) \qquad (n \in J, x \in T),$$

where $\gamma(n) = \beta(n) - \alpha(n)$. Since the measures τ_x are continuous,

(9)
$$\lim_{N\to\infty} \frac{1}{2N} \sum_{-N}^{N} c_n(\tau_x) = 0 \qquad (x \in T).$$

These averages are uniformly bounded on T, so that (9) may be integrated; combined with (8), this implies that $\gamma(n) = 0$ except possibly on a set $S \subset J$ of density 0.

Thus if S is infinite, S contains an infinite set $\{n_k\}$ such that none

of the integers n_k+1 , n_k+2 , \cdots , n_k+k belong to S, and by Lemma 2 there is an $x \in T$ and a subsequence of $\{n_k\}$, again denoted by $\{n_k\}$, such that $|c_{n_k}(\tau_x)| \ge 1$. A subsequence of the measures

$$(10) d\sigma_k(\theta) = e^{-in_k \theta} d\tau_x(\theta)$$

then converges weakly to a singular measure σ [3, p. 236] with $|c_0(\sigma)| \ge 1$ but $c_n(\sigma) = 0$ for all n > 0. This is impossible, so that S is finite.

It follows that $\alpha = \pi \beta$, where β satisfies (7) and maps J onto Γ , and π is a permutation of Γ which moves only a finite number of terms; β maps each residue class mod q onto an arithmetic progression in Γ ; hence Γ is finitely generated and is therefore a direct sum of a finite set of cyclic groups; since Γ is the union of a finite set of arithmetic progressions, only one of the direct summands can be infinite, so that Γ is a direct sum of J and a finite abelian group F.

This proves one half of the theorem. The converse may be proved by defining

(11)
$$\alpha(nq+k)=(n,f_k) \qquad (n \in J, 1 \leq k \leq q),$$

where f_1, \dots, f_q are the elements of F; it is easily verified that this induces, via (3), an isomorphism of L(T) onto L(C). In fact, every α of the above form $\alpha = \pi \beta$ has this property, as can be seen by an argument analogous to that on p. 50 of [4].

REFERENCES

- 1. Arne Beurling and Henry Helson, Fourier-Stieltjes transforms with bounded powers, Math. Scand. vol. 1 (1953) pp. 120-126.
- 2. Henry Helson, Isomorphisms of abelian group algebras, Ark. Mat. vol. 2 (1953) pp. 475-487.
- 3. ——, On a theorem of Szegö, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 235-242.
- 4. Walter Rudin, The automorphisms and the endomorphisms of the group algebra of the unit circle, Acta Math. vol. 95 (1956) pp. 39-55.
- 5. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. vol. 2 (1952) pp. 251-261.

University of Rochester