AN UNSHELLABLE TRIANGULATION OF A TETRAHEDRON

BY MARY ELLEN RUDIN

Communicated by R. H. Bing, February 14, 1958

A triangulation K of a tetrahedron T is shellable if the tetrahedra K_{1}, \cdots, K_{n} of K can be so ordered that $K_{i} \cup K_{i+1} \cup \cdots \cup K_{n}$ is homeomorphic to T for $i=1, \cdots, n$. Sanderson [Proc. Amer. Math. Soc. vol. 8 (1957) p. 917] has shown that, if K is a Euclidean triangulation of a tetrahedron then there is a subdivision K^{\prime} of K which is shellable; and he raises the question of the existence of a Euclidean triangulation of a tetrahedron which is unshellable. Such a triangulation will be described here.

Let T be a tetrahedron each of whose edges has length 1.
We will describe a nontrivial Euclidean triangulation K of T such that, if R is any tetrahedron of K, then the closure of $(T-R)$ is not homeomorphic to T.
I. Construction of K : Let X_{1}, X_{2}, X_{3}, and X_{4} be the vertices of T.

The possible values for the letters i and j are 1,2,3, and 4 and addition involving i or j will be modulo 4.

For each i, let F_{i} denote the face of T opposite X_{i}, and let U_{i} be the midpoint of the interval $X_{i} X_{i+2}$. Observe that $U_{1}=U_{3}$ and $U_{2}=U_{4}$.

Let ϵ be the length of the shortest side of a triangle whose longest side is of length 1 and two of whose angles are 1° and 60°.

For each i, let Y_{i} denote the point of F_{i+1} at a distance ($\left.3^{1 / 2} / 2\right) \epsilon$ from X_{i} such that the angle $Y_{i} X_{i} X_{i+2}$ is 1°.

For each i, let Z_{i} denote the point of F_{i+2} such that the angle $Z_{i} X_{i} X_{i+3}$ is 1° and the angle $Z_{i} X_{i+1} X_{i}$ is 1°.

The fourteen vertices of our triangulation K are the points X_{i}, Y_{i}, Z_{i}, and U_{i}. It can be shown that no triangulation which has less than 14 vertices has the desired property.

The tetrahedra of our triangulation K are the tetrahedra of the forms:
(1) $X_{i} Z_{i} X_{i+1} Y_{i}$,
(2) $X_{i} Z_{i+1} X_{i+1} Y_{i}$,
(3) $Z_{i} Z_{i+1} X_{i+1} Y_{i}$,
(4) $Z_{i} Z_{i+1} X_{i+1} Y_{i+1}$,
(5) $Z_{1} Z_{2} Z_{3} Z_{4}$,
(6) $Z_{i} Z_{i+1} Y_{i} Z_{i+2}$,
(7) $X_{i} Z_{i+1} Y_{i} Z_{i+2}$,
(8) $X_{i} Z_{i+1} Y_{i+2} Z_{i+2}$,
(9) $X_{i} U_{i} Y_{i+2} Z_{i+2}$,

[^0](11) $Z_{i} U_{i} Y_{i} Z_{i+2}$.
II. Checking the construction: The best method of doing this is to draw a big picture and label the vertices.

It is easy to check that for each tetrahedron R of K, the closure of ($T-R$) is not homeomorphic to T.

In order to check that K is a triangulation, first observe that, for each i, the tetrahedra (1), (2), (3), and (4) fit together and form a thin rod having the triangles $X_{i} Y_{i} Z_{i}$ and $X_{i+1} Y_{i+1} Z_{i+1}$ for its ends; the union of these rods forms a torus running along the edges $X_{i} X_{i+1}$. When (5) is added to this torus the remainder of T is divided into two congruent pieces each containing pieces of T along the faces F_{i} and F_{i+2}. After (6), (7), and (8) are added to the first five types there is only a small strip around $X_{i} X_{i+2}$ remaining of T; (9) and (10) complete the faces of T and (11) fills in the final space.

To see that the tetrahedra all nest together properly in the order just described, the following facts will be useful. Fact A is needed for the "rods." Fact B is needed for (3). Facts C and D are needed as assurance that none of the tetrahedra of types (5) through (11) intersect the interior of the torus. Fact E is needed to show that (7) does not intersect either (2) or (6). And facts F, G, and H are needed to show that the tetrahedra of types (6) through (11) for $i=1$ do not intersect the tetrahedra of the same types for $i=3$. The facts can be easily proved using the definitions of ϵ, Y_{i}, and Z_{i}.
(A) The plane $X_{i} Y_{i} Z_{i}$ separates $X_{i+1}, Y_{i+1}, Z_{i+1}$ from X_{i-1}, Y_{i-1}, and Z_{i-1}.
(B) The points X_{i} and Y_{i} are on the same side of the plane $X_{i+1} Z_{i} Z_{i+1}$.
(C) The plane $Y_{i} Z_{i} Z_{i+3}$ separates X_{i} and X_{i+3} from U_{i}, X_{i+2}, $Y_{i+2}, Z_{i+2}, X_{i+1}, Y_{i+1}$, and Z_{i+1}.
(D) The plane $Y_{i} Z_{i} Z_{i+1}$ separates X_{i} and X_{i+1} from U_{i}, X_{i+2}, $Y_{i+2}, Z_{i+2}, X_{i+3}, Y_{i+3}$, and Z_{i+3}.
(E) The plane $X_{i} Y_{i} Z_{i+1}$ separates Z_{i} from $Z_{i+2}, X_{i+2}, Y_{i+2}$ and U_{i}.
(F) The plane $Z_{i} Z_{i+2} U_{i}$ separates $X_{i}, Y_{i}, Z_{i+1}, Y_{i+1}, X_{i+1}$ from $X_{i+2}, Y_{i+2}, Z_{i+3}, Y_{i+3}, X_{i+3}$.
(G) The plane $Y_{i+2} Z_{i+2} U_{i}$ separates X_{i} and Z_{i+1} from X_{i+2}, X_{i+3}, Y_{i+3}, and Z_{i+3}.
(H) The plane $X_{i} Z_{i+2} U_{i}$ separates Y_{i+2} and Z_{i+1} from Y_{i}, Z_{i}, and Z_{i+3}.

University of Rochester

[^0]: $X_{i} U_{i} Y_{i} Z_{i+2}$,

