AN UNSHELLABLE TRIANGULATION OF A TETRAHEDRON

BY MARY ELLEN RUDIN

Communicated by R. H. Bing, February 14, 1958

A triangulation K of a tetrahedron T is shellable if the tetrahedra K_1, \dots, K_n of K can be so ordered that $K_i \cup K_{i+1} \cup \dots \cup K_n$ is homeomorphic to T for $i=1, \dots, n$. Sanderson [Proc. Amer. Math. Soc. vol. 8 (1957) p. 917] has shown that, if K is a Euclidean triangulation of a tetrahedron then there is a subdivision K' of K which is shellable; and he raises the question of the existence of a Euclidean triangulation of a tetrahedron which is unshellable. Such a triangulation will be described here.

Let T be a tetrahedron each of whose edges has length 1.

We will describe a nontrivial Euclidean triangulation K of T such that, if R is any tetrahedron of K, then the closure of (T-R) is not homeomorphic to T.

I. Construction of K: Let X_1 , X_2 , X_3 , and X_4 be the vertices of T. The possible values for the letters *i* and *j* are 1, 2, 3, and 4 and addition involving *i* or *j* will be modulo 4.

For each *i*, let F_i denote the face of *T* opposite X_i , and let U_i be the midpoint of the interval X_iX_{i+2} . Observe that $U_1 = U_3$ and $U_2 = U_4$.

Let ϵ be the length of the shortest side of a triangle whose longest side is of length 1 and two of whose angles are 1° and 60°.

For each *i*, let Y_i denote the point of F_{i+1} at a distance $(3^{1/2}/2)\epsilon$ from X_i such that the angle $Y_iX_iX_{i+2}$ is 1°.

For each *i*, let Z_i denote the point of F_{i+2} such that the angle $Z_iX_iX_{i+3}$ is 1° and the angle $Z_iX_{i+1}X_i$ is 1°.

The fourteen vertices of our triangulation K are the points X_i , Y_i , Z_i , and U_i . It can be shown that no triangulation which has less than 14 vertices has the desired property.

The tetrahedra of our triangulation K are the tetrahedra of the forms:

- (1) $X_i Z_i X_{i+1} Y_i$,
- (2) $X_i Z_{i+1} X_{i+1} Y_i$,
- (3) $Z_i Z_{i+1} X_{i+1} Y_i$,
- (4) $Z_i Z_{i+1} X_{i+1} Y_{i+1}$,
- (5) $Z_1Z_2Z_3Z_4$,
- (6) $Z_i Z_{i+1} Y_i Z_{i+2}$,
- (7) $X_i Z_{i+1} Y_i Z_{i+2}$,
- (8) $X_i Z_{i+1} Y_{i+2} Z_{i+2}$,
- (9) $X_i U_i Y_{i+2} Z_{i+2}$,

(10) $X_i U_i Y_i Z_{i+2}$,

(11) $Z_i U_i Y_i Z_{i+2}$.

II. Checking the construction: The best method of doing this is to draw a big picture and label the vertices.

It is easy to check that for each tetrahedron R of K, the closure of (T-R) is not homeomorphic to T.

In order to check that K is a triangulation, first observe that, for each *i*, the tetrahedra (1), (2), (3), and (4) fit together and form a thin rod having the triangles $X_i Y_i Z_i$ and $X_{i+1} Y_{i+1} Z_{i+1}$ for its ends; the union of these rods forms a torus running along the edges $X_i X_{i+1}$. When (5) is added to this torus the remainder of T is divided into two congruent pieces each containing pieces of T along the faces F_i and F_{i+2} . After (6), (7), and (8) are added to the first five types there is only a small strip around $X_i X_{i+2}$ remaining of T; (9) and (10) complete the faces of T and (11) fills in the final space.

To see that the tetrahedra all nest together properly in the order just described, the following facts will be useful. Fact A is needed for the "rods." Fact B is needed for (3). Facts C and D are needed as assurance that none of the tetrahedra of types (5) through (11) intersect the interior of the torus. Fact E is needed to show that (7) does not intersect either (2) or (6). And facts F, G, and H are needed to show that the tetrahedra of types (6) through (11) for i=1 do not intersect the tetrahedra of the same types for i=3. The facts can be easily proved using the definitions of ϵ , Y_{i} , and Z_{i} .

(A) The plane $X_i Y_i Z_i$ separates X_{i+1} , Y_{i+1} , Z_{i+1} from X_{i-1} , Y_{i-1} , and Z_{i-1} .

(B) The points X_i and Y_i are on the same side of the plane $X_{i+1}Z_iZ_{i+1}$.

(C) The plane $Y_i Z_i Z_{i+3}$ separates X_i and X_{i+3} from U_i , X_{i+2} , Y_{i+2} , Z_{i+2} , X_{i+1} , Y_{i+1} , and Z_{i+1} .

(D) The plane $Y_i Z_i Z_{i+1}$ separates X_i and X_{i+1} from U_i , X_{i+2} , Y_{i+2} , Z_{i+2} , X_{i+3} , Y_{i+3} , and Z_{i+3} .

(E) The plane $X_i Y_i Z_{i+1}$ separates Z_i from Z_{i+2} , X_{i+2} , Y_{i+2} and U_i .

(F) The plane $Z_i Z_{i+2} U_i$ separates X_i , Y_i , Z_{i+1} , Y_{i+1} , X_{i+1} from X_{i+2} , Y_{i+2} , Z_{i+3} , Y_{i+3} , X_{i+3} .

(G) The plane $Y_{i+2}Z_{i+2}U_i$ separates X_i and Z_{i+1} from X_{i+2} , X_{i+3} , Y_{i+3} , and Z_{i+3} .

(H) The plane $X_i Z_{i+2} U_i$ separates Y_{i+2} and Z_{i+1} from Y_i , Z_i , and Z_{i+3} .

UNIVERSITY OF ROCHESTER