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A Domain of Positivity D is an open convex cone associated with a 
nonsingular symmetric matrix S, called the characteristic, such that 
xÇzD if and only if x'Sy>0 for all y(~D* As such they were intro­
duced by Koecher (1) in generalization of the cone of positive definite 
matrices studied by Siegel. The automorphisms of D are the non-
singular linear transformations mapping D onto itself. The group of 
automorphisms {W] admits an anti-automorphism: W—>S~lW'Sf 

where W' means W transposed. A norm N(x) is a function positive 
and continuous for x£J9 and satisfying there N(Wx) =||TF||N(X) for 
every automorphism W. A norm is given by: 

1/N(x) = f exp {-x'St)dt 
J D 

and a group invariant positive definite metric form is given by: 

d2 log N(x) 

dXidxj 

The Domain is called homogeneous if the automorphisms are 
transitive. In this case the Domain has an involution given by: 

x —> x* = 5""1 grad log N(x). 

For homogeneous domains it is easy to show that N2(x) is always 
a rational function. If the characteristic is positive definite much 
more is true. In the first instance, the fixed points of the anti-auto­
morphism of the group of automorphisms already act transitively on 
the domain D. It follows that the norm satisfies the important equal­
ity: 

N(x* + y*) • N(x) • iVX?) = N(x + y). 

Moreover, for every point x in D there is an involution of the Domain 
keeping x fixed. Hence D is a symmetric (Cartan) space, and it is 
possible to make a detailed study of the Lie group of automorphisms. 
The following facts emerge: 

(a) N2(x) is a polynomial, 
(b) The geodesic connecting any two points (given by Cartan's 

construction of geodesies in a symmetric space) is unique, 
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(c) The Domain has everywhere zero or negative curvature. 
(d) The involution on D extends to an analytic involution of the 

whole of the tube with D as base onto itself. 
On the basis of (a) it follows from a result of Bochner (2) that the 

so-called "Gamma-Factor" of the Domain is indeed a product of 
Gamma functions. From (d) together with the equality described 
above satisfied by the norm, it follows from another result of Boch­
ner (3) that there exist unitary transformations of L^{D) relative to 
the volume element N*(x) for suitable values of s, which generalize 
the Hankel Transform. 

In quite another direction is the result, true for any homogeneous 
domain that, except for a multiplicative constant, l/N2(z+w) is the 
Bergmann reproducing kernel for analytic L% in the tube with D as 
base. This result shows quite clearly that the involution on D cannot 
extend to a holomorphic mapping of the tube with D as base unless 
the norm satisfies the equality stated earlier. 

We understand Koecher has proved some of the same results, 
though they are not yet published at this writing. 
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