
HIERARCHIES OF NUMBER-THEORETIC PREDICATES 

S. C. KLEENE 

The existence of hierarchies of point sets in analysis has long been 
familiar from the work of Borel and Lusin. The study of the hier­
archies in number theory which we consider here began with a theo­
rem presented to the Society in 1940 and published in [12], These 
hierarchies have applications in foundational investigations, but we 
shall be concerned here with the exploration of their structure (using 
classical logic). We shall survey the previous results from the begin­
ning, and conclude with a few new ones. We have endeavored to 
make the exposition complete enough so that the layman in this 
field can get the gist of the arguments without consulting the refer­
ences. 

1. Recursive functions and predicates. By a number-theoretic func­
tion {predicate) we mean a function, of independent variables ranging 
over the natural numbers 0, 1, 2, • • • , x, x + 1, • • • , taking natural 
numbers (propositions, true or false) as values. 

By general recursive functions (predicates) we mean ones whose 
values can be computed (decided) by ideal computing machines not 
limited in their space for storing information. A theory of such ma­
chines was given by Turing [30 ] and in less detail by Post [24] 
(also cf. [16, Chapter XI I I ] ) . The general recursive functions can 
also be described as those whose values can be expressed by equations 
derivable formally from "recursion equations" defining the functions, 
in a sense first formulated precisely by Gödel [9] who built on a 
suggestion of Herbrand's (also cf. Church's [3], and our [10; 12; 16, 
Chapter XI ] ) . A general recursive predicate P(xi, • • • , xn) is then 
one whose representing f unction <£(#i> • • • , #n) ( = 0 or 1 according as 
P(xi, • • • , xn) is true or false) is general recursive. 

The computation of a value of a general recursive function may 
involve a search through the natural numbers for the least one y with 
a given property without a bound for such a y having already been 
computed. By allowing such searches also when they may not termi­
nate, we obtain an extension of the class of the general recursive func­
tions to the partial recursive functions, which need not be defined for 
all sets of arguments [ l l ; 12; 16, Chapter X I I ] . By disallowing such 
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searches altogether, and requiring the functions to be generated, 
starting with the variables, 0 and x-\-l, by "primitive recursions", in 
which the function value for an argument y + 1 is given in terms of 
that for y, and substitutions, we obtain a specialization of the general 
recursive functions to the primitive recursive functions [8; 10; 12; 16, 
Chapter I X ] . Predicates are partial {primitive) recursive, if their 
representing functions are such. 

Since a particular partial recursive function is defined by a machine 
or by a system of equations, which is a finite object, the class of the 
partial (including the general) recursive functions is countable. I t is 
in fact possible to assign numbers many-one to the partial recursive 
functions so that, given a number of a function and a set of argu­
ments for it, we can compute the value (if defined). We state this 
result (with additional details) as a theorem. 

I. For each n^O: There is a fixed partial recursive function 
&n(%, %i, • ' ' , xn) such that, to any partial recursive function 
cj>(xi, • • • , xn) there is a number e (called a Gödel number of 4>) for 
which <f>(xi, • • • , x n )~$ w (£ , xi, • • • , xn). In fact: &n(z, Xi, • • • , xn) 
c^.JJ{ixyTn{z1 Xi, • • • , xn, y)) where Uis a primitive recursive function, 
Tn is a primitive recursive predicate, and /ry means (ithe least y such 
that". (The normal form theorem.) 

We write c^± instead of = in equations between partial recursive 
functions to indicate that they can hold by both sides being un­
defined (e.g. 4>(x) =cj)(x) + l is absurd, but $ ( x ) ~ 0 ( x ) + l merely im­
plies that <j>(x) is undefined). The numbers e we call "Gödel num­
bers", because we obtained them in [10; 11; 12; 16, pp. 288, 330, 340] 
by applying essentially Gödel's method of numbering [8] to the sys­
tems of equations. 

II . For each m, n^O: There is a primitive recursive function 
S%(z, yi, • ' • , ym) such that, if e is a Gödel number of 4>{yi, * * * , y mi 
Xi, - • • , xn) as a function of all m+n variables, then for each m fixed 
numbers yi, • • • , ym, S%(e, y\, • • • , ym) is a Gödel number of 
0(^1, • • • » ym, X\, • • • , xn) as a function of the n remaining variables 
X\, , Xn» 

We trust this will appear plausible. (For details, cf. [ i l ; 16, p. 342 
(erratum, 1952 printing, 1. 7 from below, replace "d* • • • " by 
ttd* [2exp • • • ]")].) 

I I I . Given any partial recursive function x(^, ), there is a 
Gödel number e of %(#, %i, • • • , xn). (The recursion theorem.) 

Let ƒ be a Gödel number of x(Sn(y, y), Xi, • • • , xn), and let 

By III , we can introduce a partial recursive function 0 whose value 



1955] HIERARCHIES OF NUMBER-THEORETIC PREDICATES 195 

<j)(xi, • • • , xn) is expressed partial recursively in terms of a Gödel 
number e of <j> itself and the arguments Xi, • • • , xn; i.e. we can put 
</>(xi, • • • , xn)c^x(ej ffi, • • • , xn) for x a given partial recursive 
function and e a Gödel number of <£. Sometimes the form of % will 
then enable us to infer that cj> is general or even primitive recursive. 
[11; 16, pp. 352 ff.]. 

2. The arithmetical hierarchy. Most predicates used in elementary 
number theory can be expressed by starting with general recursive 
predicates and applying the logical operations of the restricted predi­
cate calculus, i.e. the propositional connectives & (and), V (or), 
(not) and —> (implies), and the quantifiers, generality (x) (for all x) 
and existential (Ex) (there exists an x such that) . We call these 
predicates arithmetical, following Gödel who introduced them a little 
differently [8; 9; 16, pp. 239, 285]. 

Let pi be the ith prime number, counting 2 as the Oth. Let (a)i 
= {the exponent of pi in a as a product of powers of distinct primes, 
if a7*0; 0, if a==0) [16, p. 230]. Then (x0) • • • (xm)A(x0, • • • , xm) 
^(x)A((x)o, • • • , (x)m), and similarly with existential quantifiers. 

IV. Every arithmetical predicate P(a) is expressible in one of the 
forms 

(Ex)R(a, x) (x)(Ey)R(a, x, y) (Ex)(y)(Ez)R(a, x, y, z) 
(a) R(a) 

(x)R(a, x) (Ex)(y)R(a, x, y) (x)(Ey)(z)R(a, x, y, z) 

where the R for each form is general recursive. 
One of these forms will be obtained, starting with an expression 

for P(a) as an arithmetical predicate, by first advancing the quanti­
fiers to the front, and then contracting consecutive like quantifiers 
as just indicated [12; 16, p. 285]. For brevity we are stating IV-VIII 
for one variable a, but they hold for Xi, * • • , xn instead (n^O for 
IV, V, VIII , n>0 for VI, VII) . 

V. Given any general recursive predicate R(a, x), there is a number f 
such that (Ex)R(a, x)^(Ex)Ti(f, a, x). Similarly f or the other quanti­
fied forms of (a). (The enumeration theorem.) 

Let ƒ be a Gödel number of jxxR(a, x). This function is defined for 
given a, by definition if and only if (Ex)R(a, x) ; by ƒ being its Gödel 
number if and only if (Ex)Tx(f, a, x). Similarly (Ex)(y)R(a, x, y) 
^(Ex)(y)T2(g, a, x, y) when g is a Gödel number of nyR(a, x, y). 
[12; 16, p. 281]. Incidentally, V shows that the same predicates are 
expressible in a given quantified form of (a) with a primitive as with 
a general recursive R. 

VI. To each of the quantified forms of (a) there is a respective predi­
cate 
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(Ex)Ti(a, <z, x) (x)(Ey)T2(a, a, x, y) (Ex)(y)(Ez)Tz(a, a, x, y,z) • • • 
(x)Ti(a, a, x) (Ex)(y)T2(a, a, x} y) (x)(Ey)(z)Tz(a, a, x,y,z) 

of that form which is not expressible in the dual form, a fortiori not in 
any of the forms with f ewer quantifiers. (The hierarchy theorem.) 

Given a recursive R(a, x), the ƒ of V is a value of a for which 
(tf)Ti(a, a, x)^(Ex)R(a, x) [12; 16, p. 283]. 

By a complete 1-place predicate of a certain form (or belonging to 
a certain class) we mean a predicate C(a) of the form and such that 
to each predicate P(a) of the form there is a recursive function 6(a) 
(actually primitive recursive in all our examples) for which P(a) 
= C(6(a)). 

VII. The predicate (Ex)Ti(a, a, x) of VI is a complete predicate of 
the respective form (Ex)R(a, x) of (a). Similarly for the other quantified 
forms of (a). 

Let e be a Gödel number of fxxR(a, x) as a function of a, t (in 
Church's X-notation [16, p. 34], of the function \atyxR(a, x)). Then 
S\(e, a) is one of \tjjixR(a, x), which for any t is denned if and only if 
(Ex)R(a, x). So (Ex)R(at x) =• (Ex)T1(S\(e1 a), t, x)t whence substitut­
ing S\(e, a) for t, {Ex)R{ai x) = C(0(a)) for C(a)^(Ex)T1(af a, x) and 
6(a) =5}(6, a). ([16, p. 343]. A different C(a) was used by Post [25], 
and by the author in lectures in 1941 ; cf. [19, Footnote 8].) 

VII I . The general recursive predicates R(a) are exactly those expres-
sible in both the 1-quantifier forms of (a). (Analog of Souslin's theo­
rem.) 

For R(a) = (Ex)R(a) = (x)R(a). Conversely, if R(a)jz(Ex)R(a, x) 
= (x)S(a, x) with R and S recursive, then R{a) =• {Ex)"S{ay x), and by 
first calculating fix(R(a, x)\/"S(a, x)) we can decide R(a). ([16, p. 
284]. The theorem was given by the author [12], by Post [25], and 
by Mostowski [22] who noted that it is analogous to a theorem of 
Souslin on Borel and analytic sets.) 

3. Relative recursiveness. Instead of a machine for computing a 
function </>(xi, • • • , # » ) outright, we can imagine one which would 
compute </>, if there were supplied to the machine values of a function 
\[/(x) on demand, i.e. for arguments arising in the computation. (In 
this paper the \p shall be a completely defined function.) This idea 
leads us to functions and predicates general {partial, primitive) recur­
sive in \[/, and predicates arithmetical in \p. ([16, pp. 275, 326, 224, 
291]. In terms of machines, the idea appeared in a special setting in 
Turing [31, §4]; in terms of general recursiveness, in [12].) 

We can obtain relativized versions of the above theorems simply by 
modifying the proof of I to suppose values of \p available in the com-
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putation of c/>. However it is useful to observe that a t any stage of 
the computation only a finite number of values of yp can have been 
used. So the computation can be arranged to involve a search in 
which a t the yth. stage only the first y values ^(0), • • • , \p(y — l) of 
\p have been made available. These y values can be represented by 
either of the two numbers 

wy)-n/.<-)+1, ^) = n/^. 
x<y x<y 

Note that y = \h.(\p{y)) with lh primitive recursive [16, p. 230]. 
IX. Theorems I—VIII hold when in place of the notions 'recursive, 

'$?n', 'Gödel number', 'Tn\
 lS%', 'arithmetical1, '1-quantifier forms' we 

use 'recursive in \p\ '&t\ 'Gödel number from \py, 'T%', 'S^'1', 'arith­
metical in \p', 'l-quantifier forms relative to \py, respectively, except that 
U, Sf»1 are still primitive recursive (call them then I*—VIII*). More­
over Tt(z, Xi, • * • , xn, y)^Tl(\p(y), z, xi, • • • , xn) where T„ is primi­
tive recursive. 

We have stated IX for one (completely defined) function \p of one 
variable (hence the superscript "*" or sometimes i(1" for the number 
of its variables). We could instead have a (completely defined) predi­
cate Q, where \p is its representing function; or we could use any 
finite list >P of (completely defined) functions and predicates [16, 
p. 292]. 

X. There is a number g such that, if A (a) is recursive in B(a) with 
Gödel number e, then (Ex)T((a, a, x) is recursive in (Ex)Ti(a, a, x) 
with Gödel number S\,l(g, e). 

For any 1-place predicate B and number e, let Be be the 1-place 
function partial recursive in B with Gödel number e. By the method 
of proof of VII*, there is a primitive recursive function 6, independent 
of B, such that (Ex)Tie(a, a, #) = (£#) jf(0(e, a), 6(e, a), x) for values 
of B, e, a which make \xTfe(a, a, x) completely defined. Let g be 
a uniform Gödel number from P (i.e. one independent of P) of 
\eaP(0(e, a)). [19, beginning 4.1]. A X* holds, e.g. with uQ, B(a)», 
"T?>A", "Tf2*" in place of "B(a)»f "7f ", « r f» . 

The relation 'P is general recursive in Q1 is reflexive and transitive 
[16, p. 275]. Hence 'P is general recursive in Q and vice versa' is 
reflexive, symmetric and transitive. Post in [25; 26] associates with 
each predicate P a degree so that P and Q possess the same degree 
exactly if each is general recursive in the other. The degree of P is 
less than that of Q, if P is recursive in Q but not vice versa. A com­
plete predicate of a given form (cf. VII , VII*) is of maximal degree 
for predicates of that form. Applying X in two directions to predi-
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cates Ci, Q2 of the same degree, the degree of (Ex)T^(a1 a, x) depends 
only on the degree of Q. The structure of the system of the degrees is 
discussed in detail in [19]. 

The predicates of VI of the two & + l-quantifier forms are negations 
of each other, and hence are of the same degree. But in XII we shall 
see that they are of higher degree than any predicate expressible 
with fewer quantifiers. For this we need the following generalization 
of VIII due to Post [26]. 

XI . For each k^O: The predicates general recursive in predicates 
expressible in the k-quantifier forms of (a) are exactly the predicates ex­
pressible in both the k + 1 -quantifier forms. (Post's theorem.) 

That a predicate expressible in both £ + l-quantifier forms is re­
cursive in ^-quantifier predicates is proved for k > 0 essentially as be­
fore for k~0. The proof of the converse is a little too detailed to be 
sketched here; it can be based on the special form of V* in terms of 
\J/(y) or \j/(y) [16, p. 293]. An X I * referring similarly to IV* is ob­
tained by reading "forms relative to Q" for "forms". 

Let No(a)^Lo(a)z=a = a. Let the predicates in the upper row of 
VI be abbreviated Ni(a), N2(a), Nz(a), • • • . Let Lk+i(a) s (Ex) 
T^k(a, a, x). 

XII . For each k^O: Nk+i is expressible in a k + 1-quantifier form of 
(a), is of maximal degree for predicates so expressible, and is of higher 
degree than Nk. Similarly with 'L' in place of 'N'. (The strengthened 
hierarchy theorem.) 

The proof with 'N' is immediate from VII, XI and VI; with kV it 
follows thence, using induction on k and XI , VII*. A X I I * with 
'NQ' and W is based similarly on VI*, VII*, X I * (Ng(a) s 2 # ( a ) 
= Q(a); Ni Ni Ni • • • is the upper row of VI*; L?+1(a) s (£*) 
7\L*%, a,x)). 

4. The extended arithmetical hierarchy. Kalrnar first noticed that 
nonarithmetical predicates can be defined by induction using quanti­
fiers within the induction step. (Cf. Skolem [27]; we gave a simple 
example in [12; 16, p. 287].) Let N(a} k)^Nk(a), L(a, i ) s L k ( a ) . 
Then N and L are of degree exceeding that of every arithmetical 
predicate. For each arithmetical predicate is recursive in one of 
No, Ni, N2, - - - , each of which is recursive in N, and the degrees of 
which are ascending; and similarly with lL\ (N and L are of the 
same degree, by [19, Footnote 29].) 

The predicate L(a, k) can be contracted to a 1-place predicate 
L(a)=L((a)o, (#)i) of the same degree. Then by using X I I * with 
Q(a)^L(a) we get a sequence of predicates of degrees ascending 
from that of L. This process can be repeated, so that we obtain 
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predicates correlated to various transfinite ordinal numbers, begin­
ning with L correlated to co. 

However for this to make sense we must be careful in our handling 
of the ordinals. We might correlate to co also L(a, <j>{k)) where <fr(k) is 
any other increasing function than cj>(k)=k. But then by the next 
theorem, various choices of <j> would give predicates correlated to o) of 
arbitrarily high degrees. (To any function \p, 4>(k) = ^fX<k1^(x) + l is 
an increasing function of the same degree.) 

X I I I . For any function <l>(k): The f unction <j>(k) is general recursive 
in the predicate N{a, </>(k)), and in the predicate L(a, </>(&))• 

PROOF. For lN\ using the actual definition of Tn(z, Xi, • • • , xni y) 
[16, pp. 278, 281], it can be seen that fxaNk(a) for k = 0 is 0, and for 
k>0 is the Gödel number (p^O) of a system of equations consisting 
of a single equation f(ri, • • • , rk)=0, whence k itself can be read. 
Thus k (as a function of 0 variables) is partial recursive in Nk, uni­
formly in the sense that the indicated method of calculating k from 
Nk is applicable independently of what predicate Nk is. On replacing 
k by 4>{k), this gives the theorem for 'N' (cf. [16, p. 344]). For 'L\ 
using the actual definition of Tf(z, a, x) [16, pp. 290, 291], i 0 (0) is 
true, but Lk(a) for k>0 is only true when a is the Gödel number of a 
system of equations and hence is 5^0. Also, using VII*, a predicate 
A (a) (z=(Ex)A(a)) is recursive uniformly in (Ex)Tf(a, a, x). So 
from Lk(a) we can find k, by asking whether Lk(0) is true, if not 
whether Lk-i(0) is true, etc., and counting the questions asked until 
the answer is affirmative. Thus (using I I I* for n = 0) k is partial re­
cursive uniformly in L&. A X I I I * is obtained by reading "NQ", 
"LQ" in place of "Nn, "L", for the case of any Q(a) such that 0(0) is 
true. 

What we do is to handle the ordinals on the basis of recursiveness. 
Such a theory of constructive ordinals was set up in a series of papers 
by Church and the author [5; 4; 11; 13; 18]. 

In the version we shall use (the system S3 of [ l l ; 13; 18]), ordinals 
are represented by natural numbers. Let 0 be the class of the natural 
numbers used, to each y GO let \y\ be the ordinal represented, and 
let u<oy be the partial ordering relation which holds when u enters 
into the generation of y as a member of 0 by the following principles. 
1GO and | l | = 0 . If yGO, then 2^GO, |2*| = | y | + 1 and y<02

y. 
(Thus in particular the finite ordinals 0, 1, 2, • • • are represented 
by the numbers 1, 21, 22 \ • • • , which we also write 0o, lo, 2o, • • • . 
When yGO, we often write 2y as y*.) If 3/0, yi, 3>2, • • • G.O, and 
3>o < o3>i < o3>2 < o • • • , and for each n, yn is the value for no of the 
partial recursive function with Gödel number y (so yn = *i(y, ^o)), 
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then 3'5yÇzO, \S-5V\ = limn \yn\, and for each n, yn<oS-5v. These 
principles, together with the transitivity of <o, constitute a simul­
taneous inductive definition of 0 and <o and a definition of \y\ by 
induction over 0. 

If u<0y,then \u\ <\y\. (If u<0y, then u, y&O [13, §12; 18, §20].) 
The ordinals \y\ for y GO constitute a proper segment of Cantor's 
first and second number classes determined by "the least noncon-
structive ordinal" coi. The predicate < o only partially orders 0, 
since for each limit ordinal a<o)i, different ascending sequences with 
limn \yn\ = a, different partial recursive functions (j> with </>(no) =Jn, 
and different Gödel numbers y of <j>, can be chosen. However the 
natural numbers u<o any fixed natural number y are linearly (and 
well-) ordered by <0 (e.g. [18, §20]). 

Now we define a predicate Hy(a) for each y GO, so that Ho0, H\0, 
H2o, - • • will be Lo, Lly L2, • • • , and Hw will be L when w is a suita­
ble notation for co (namely, when w = 3-5v and $i(;y, Wo) —no). 

We simply put u i (a) ^ a = a ; H2
y(a)^(Ex)T?v(a, a,x) if ^ GO; and 

H9.^(a)^HVMl((a)o) if 3 -5 'GO and y»=*i(y, n0). 
XIV. To each yG.0, the predicate Hy is defined] and for u<oy, Hu is 

of lower degree than Hy. Moreover, there is a primitive recursive function 
p(u, y) such that, if yC.0 and u^oy, then p{u, y) is a Gödel number of 
Hu from Hy. 

The first sentence is clear by the reasoning applied above to 
Lo, L\, L2, • • • , and L. So in particular, for u^oy, Hu is recursive in 
Hy\ examining this recursiveness in detail, we are able using III to 
obtain a Gödel number for it by a primitive recursive function p{u, y) 
[17, 6.3]. 

Sums u + oy of ordinal notations u, yÇzO can be defined by induc­
tion so that + o is primitive recursive and |w+o3>| = | u \ +\y\ [18, 
§22]. In fact u g o u + o y but not always y Sou+oy [18, §22 and Foot­
note 30 ]. Finite sums 

ZoHi) 

where ( i ) [ ^ ( i )G0] can then be defined primitive recursively in \p 
[18, §23]. 

XV. There is a primitive recursive function a(u, y) such that, if 
u, yÇzO, then Hy is general recursive in Hu+oy with Gödel number 
<T(U, y). 

This can be proved similarly to XIV, using X [17, 6.3]. 
Extensions of the arithmetical hierarchy have been discussed by 

Davis [6; 7] and Mostowski [23], and were known independently 
to Post and to the author. Davis' extension is as here based on 
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Lo, i i , L2, • • • ; Mostowski's on No, Ni, Nt, • • • , besides which he 
proceeds differently a t limit ordinals. After adjusting for this differ­
ence, the degrees of the predicates correlated to a given y SO are 
the same [17, §9]. Davis [ó] proves that the predicates correlated to 
different notations for the same ordinal \y\ are of the same degree, 
for \y\ <co2. In [28] Spector will extend this to all \y\ <a>i. 

5. The analytic hierarchy. When a function <j> or predicate P is 
(general, partial, primitive) recursive in \J/ and the relationship is 
uniform (i.e. the method of computing 0, or deciding P , from }{/ is 
independent of what number-theoretic function \[/ is), we can regard 
0 as a recursive function, and P as a recursive predicate, of \f/ as an 
independent function variable besides of the number variables [15; 
17]. More generally there may be several function variables; we shall 
usually write them ce, ]8, 7, «i, • • • , an, etc. We take them to be vari­
ables for 1-place functions, which suffices for present purposes. 

If we apply to general recursive predicates of number and function 
variables the operations of the predicate calculus with quantification 
only of number variables, we get as before arithmetical predicates ex­
cept that now they may have function variables. If we apply the 
operations of the predicate calculus with quantification of function 
variables also allowed, we get analytic predicates. If their only (free) 
variables are number variables, they come under the subject of this 
paper. 

The analytic predicates were studied in [17], where we began by 
seeing to what extent the theory could be developed analogously to 
[12]. 

First, by exploring the possible permutations and contractions of 
number and function quantifiers together, we get an analog of IV. 

XVI. Every analytic predicate P(a) is expressible in one of the forms 

l} (Ea)(x)R(a, a, x) (a)(E0)(x)R(a, a, 0, x) 

where A is arithmetical and each R is general recursive. Equivalently 
these forms can be written respectively 

(a) A (a, a) {Ea){0)A{a, a, 0) 
(b2) A (a) 

(Ea)A(a, a) (a)(Ep)A(a, a, 0) 
where each A is arithmetical. 

The first and third of the next theorems follow from V* and VII* 
by quantification of function variables; the second from the first as 
VI from V. 
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XVII . Given any general recursive predicate R(a, a, x), there is a 
number ƒ such that (a)(Ex)R(a, a, x)^(a)(Ex)T"(f, a, #)==(«) 
(Ex)T\(a(x),f, a). Similarly f or the other quantified forms of (b). 

XVII I . To each of the quantified forms of (b) there is a respective 
predicate 

(a)(Ex)Ti(a, a, x) (Ea)(fi)(Ex)T?\a, a, x) 

(Ea)(x)T°(a, a, x) (a)(Ep)(x)T?\a, a, x) 

of that form which is not expressible in the dual form, a fortiori not in 
any of the forms with fewer quantifiers. 

X I X . The predicate (a)(Ex)Ti(a, a, x) of XVIII is a complete 
predicate of the respective form (a)(Ex)R(a, a, x) of (b). Similarly f or 
the other quantified forms of (b). 

The hierarchy (b2) is formally similar to (a). However consider the 
analog of VIII under this comparison. Half of it holds (by X X for 
& = 0), but not the converse part (by XXI , since Hy for \y\ ^co is 
nonarithmetical). 

XX. For each k^O: Each predicate arithmetical in predicates ex­
pressible in both the k-\-l-function-quantifier forms of (b) (a fortiori, 
each arithmetical predicate) is expressible in both the k + 1-function-
quantifier forms. 

This is proved similarly to XVI (details in [17, 5.2]). 
X X I . Each predicate Hyfor yÇ^O is expressible in both the 1-function 

quantifier forms of (b). In fact, there is a primitive recursive function 
r{y) such that, for each y GO, 

Hy(a) s (a)(Ex)TÏ((T{y))o, a, x) ss (Ea)(x)TÎ(«y))h a, x). 

The second sentence of the theorem gives the idea of the proof 
(details in [17, 8.3]). Predicates definable from recursive predicates 
by quantification of function variables can also be so defined by 
quantification of set variables and vice versa [17, 3.8], That every 
predicate Hy is definable by such quantification was shown by Davis 
in [ó], for \y\ <o>2; and was stated by Mostowski in [23], for 
\y\ <coi. That one such quantifier suffices is new with this theorem. 

6. The predicates expressible in both 1-function-quantifier forms. 
Since the analogy of (b) to (a) breaks down on VIII , the problem 
arises of characterizing, independently of the hierarchy (b), the class 
of the predicates expressible in both the 1-function-quantifier forms 
of that hierarchy. By XXI this class contains Hy for every y GO, 
and then by X X every predicate recursive (and hence arithmetical) 
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in some Hy is in the class. So in [ l7] we conjectured that the predi­
cates each recursive in Hy for some y £ 0 are the ones expressible in 
both 1-function-quantifier forms. The principal contribution of the 
present paper is a proof of this conjecture (cf. XXIV). 

By XVII , (a)(Ex)R(a, a> x) with R general recursive can be re­
written in the form (a)(Ex)R(a, â(x)), where R(a> w) is primitive 
recursive, and where in fact (by the definition of T\(w, Z, a) [16, p. 
291 ] with [l 7, Footnote 2 ]), for each a and ce, R(a, â(x)) is true for at 
most one x. 

The number a(x) ( = JJ^i<xpfi)+1) represents the sequence ce(0), 
• • • , a(x — l) of x numbers. Such a number a(x) (for any a, and any 

x^O) we call a sequence number. The property Seq(w) of being a 
sequence number is primitive recursive; in fact, Seq(w)^W9^0 
& (i)i<ih(w)[(w)i9^0]. The sequence numbers include 1 which repre­
sents the empty sequence, and for each i the number 2i+1 which 
represents the unit sequence i. The sequence ce(0), • • • , a(x —1), 
j3(0), • • • , P(y — 1) is represented by ct(x) * fi(y) where * is primitive 
recursive [16, p. 230]. 

We use > to denote the linear ordering of the sequence numbers 
which is established by ordering the finite sequences represented by 
them lexicographically, with shorter sequences coming above longer 
ones, and using the infinite descending alphabet • • - , 2, 1, 0. In this 
ordering, 1 which represents the empty sequence is the highest ele­
ment. (If Seq(^) or Seq(fl), u>v shall be false. The predicate u>v is 
primitive recursive.) 

Now take any predicate i?(a, w) and number a. We shall say that 
(with respect to R and a) a sequence number w = dt{x) is secured if 
(Et)t^xR(a, &(t)), past secured if (Et)t<xR(a, 5(0)» immediately secured 
if w is secured but not past secured, securable if w is secured or 
(fi)(Et)R(a, a(x) * £(*)) (i.e. if (Et)R(a, â(t)) no matter how the values 
ofa(t) for t^x are chosen). ([18, §24]. If Seq(w), wshall be unsecured 
and unsecurable. The terms "secured" and "securable" are adapted 
from Brouwer [ l ; 2].) 

Now we define a subset 5f'a of the sequence numbers, for a given 
sequence number w. If ze; is not past secured, S^a shall be the set of 
all the numbers w*fi(t) which are not past secured. If w is past se­
cured, 5 j a shall be the unit set {w}. (If Seq(w), S%a shall be the 
empty set. The predicate uÇ.S^,a is primitive recursive uniformly in 
R.) 

X X I I . Let Seq(w). The set S%a is well-ordered by > , if and only if 
w is securable with respect to R and a. So in particular, Sfa is well-
ordered by > ,if and only if (a)(Ex)R(a, a(x)). 
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If w is unsecurabie, then by definition w is unsecured and 
T$)(Et)R(a, w*p(t)), whence (E(3)(t)R(a, w*p(t)). For this 0, 
w*fi(t) (£ = 0, 1, 2, • • • ) is an infinite descending sequence within 
5f'a. Conversely, given any infinite descending sequence within 
S^,a, w is unsecured, and by considering that the alphabet • • - , 2 , 1 , 0 
is well-ordered, we are led to a /3 such that (t)R(a, w*fi(t)). [18, §26, 
especially (H).] 

X X I I I . Let R(a, w) be primitive recursive, and let Seq(w). There is 
a primitive recursive function £(a, w) such that, if S%a is well-ordered, 
then £(a, w) £ 0 and | £(a, w) | + 1 is the ordinal number of S^a. 

If S f ' a i sno t {w}, then 

S*J° = ( £ sR
w:a*+)+{w}. 

\ i « 0 , l , 2 , . . . / 

The sum operation here on the sets is paralleled by a summing of 
ordinal notations in the construction of £. [18, §25, §26 (F).] 

XXIV. If P(a)^(a)(Ex)R(a, a, x)^(Ea)(x)S(a, a, x) with R and 
S recursive, then f or some yÇ£0, P(a) is general recursive in II y. 

PROOF. By XVII as remarked above, and since S^-S where S is 
also recursive, we can write 

(1) P(a) s (a)(Ex)R0(a, â(x)) s (Ea)(x)Ri(a, â(x)) 

where Rj (j = 0, 1) is primitive recursive, and for a given a and a, 
Rj(a, â(x)) is true for a t most one x. 

If a ranges over all 1-place number-theoretic functions, and we 
put ai(x) = (a(x))j, then (a0, a1) will range over all pairs (ceo, «i) of 
1-place number-theoretic functions. Let x—y — x — y il x^y, = 0 if 
x<y. For the present proof, let 

Pi 
i<lh(w) 

Then w3- is a primitive recursive function of w, and â(x) j = aJ'(x). Let 
R(a, w)^R0(a, w0)\/Ri(a, wx). Let wst = w* 22*-3^. 

By the law of the excluded middle, (a) [P(a)\J P(a) ]. But 

(a)[P(a) V P(a)] 

s (a)[(a)(Ex)R0(a, â(x)) V (Ëa)(x)Rx(a, â(x))] 

s (a)[(a)(Ex)R0(a, â(x)) V (a)(Ex)Rl(a, a(x))] 

=s (a)(a0)(ai)(Ex)[RQ(a, a0(x)) V Ri(a, oti(x))] 

s (a)(a)(Ex)[Ro(a, â(x)0) V Ri(a, a(*)i)] = (a)(a)(Ex)R(a, a(x)). 

Thus 
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(2) {a){a){Ex)R{a, a(a)). 

So by X X I I , for every a, the set Sfa is well-ordered by >. (The 
y for the theorem will be a notation for the ordinal number of the 
sum of the sets Sf,a for a = Q, 1, 2, • • • .) 

If wÇ:Sf'a, then either (Case 1) w is immediately secured (i.e. 
R{a, w)), or else (Case 2) w is unsecured and the numbers w*2i+1 

(i = 0, 1, 2, • • • ) and hence in particular the numbers wst {s, t 
= 0, 1, 2, • • • ) belong to 5? ,a and come below w in the ordering > . 

Hence we can define predicates Pj(a, w) (i = 0, 1) for all a and for 
wSSf'a by transfinite induction over Sf'a as follows. 

(R0{a, wo) if R(a, w), 

l(s)(E/)Po(a, w.O if P(a, w), 

(Pi(a, wi) if P(a, w), 

{t){Es)Pi{a, w3t) if P(a, w). 
Pi(a, w) s < 

Now we prove that, for each a, 

(3) Po(a, 1) V Pi(a, 1). 

This will follow by setting w = l, if we can prove by induction over 
S?*a that , for w<ES?a, Po(a, w)VPi(a , w). CASE 1: 2?(a, w). By 
definition, then either 2?o(a, ze>o), in which case Po(#, w), or P i (a, Wi), 
in which case Pi(a, w). CASE 2: 2£(a, w). Then for each 5 and t, 
WstG.Sf,a; and by the hypothesis of the induction, {s){t)[Po{a, w8t) 
\/Pi{a, wst)]. If {Es){t)P0{a, wst)&{Et){s)P1{a) wtt), then jfor the s 
given by the first and the t by the second we would have Po(a, ie>si) 
&Pi{a, wst) j contradicting the hypothesis of the induction. So 
{Ë~s){t)Po{a, w8t)V{Ët){s)P1{a} wst), i.e. {s){Et)PQ{a, w3t)V(t){Es) 
Pi (a, w8t), whence by the definitions of P 0 and Pi, Po{a, w) \/Pi{a, w). 

Next we prove that, for each a, 

(4) {Ea){x)R3{a} a{x)) -> P3{a, 1) ( i = 0, 1). 

Take e.g. i = 0. Suppose given a and a such that (#)Po(#, s(x)). For 
this ce, a sequence number w with wo = a(lh(w)) we call an a-nutnber. 
Now by (1), {a){Ex)Rl{a1 a(*)). So by X X I I , S^'a is well-ordered by 
> . We prove by transfinite induction over S?1** that for vGSfh\ if 
w is an ce-number such that Wi=v, then Po{a, w). Since w is an a-
number, Ro(a, WQ). CASE 1 : P i (a, v). Then by W\=*v and the definition 
of P , P(a , w). So by definition, P0(a, w) ̂ R0{a, wo). So by Po(#, Wo), 
Po(a, w). CASE 2: Pi(a, «;). Then for every *, v *2t+1GSfu\ Let 
5=ce(lh(w)). Then for every t, wst is an a-number with [^f]i==^ * 2 '+ 1 . 
So by the hypothesis of the induction, {t)P0{a, wst). Thus {Es){t) 
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Po(a} Wat) y i.e. (s)(Et)Po(a, w8t). By Pi(#, v) with wx-=v and So (a, wo), 
P(a, w). So by the definition of P 0 , Po(#, w). This completes the in­
duction. But 1 is an a-number w with wx~\, and 1 <E.Sf1,a. So Po(a, 1). 

By (4) contraposed and (1), 

(5) P0(a, 1) -» P(a), Pi(a, 1) -> P(a), 

whence by (3), 

(6) P(a) » P0(fl, 1) s ?x(a, 1). 

Now we shall obtain a primitive recursive function v(a, w) such 
that, for each a and each wG«Sf'a, Po(#, w) as a function of 0 variables 
(i.e. \Po(a, w)) is recursive in H^a,W)** (cf. XXII I ) with Gödel number 
u(a, w). The property of u(a, w) is to be established by transfinite 
induction over Sf'a. However, instead of defining v first, we shall be­
gin by considering the two cases of the induction, in each case de­
riving a property of v sufficient to treat the case. Then in conclusion 
we shall verify that v can be defined so as to possess these properties. 
CASE 1: R(a, w). Then P0(a, w)^Ro(a, Wo). So \awP0(af w) is recur­
sive, a fortiori recursive in H^atW)** say with Gödel number hi. So by 
II* it will suffice to take v(a, w) =Sl'1(h1, a, w). CASE 2: P(a, w). Then 
by the hypothesis of the induction, XP0(a, wst) is recursive in H^a,wat)** 
with Gödel number v{a, w8t), call this number A. By the definition of 
£ in [18, §25], £(a, w)=3-5* where (writing fln=*i(*>, no)) 

Vn = E o ? ( a , W*2^)*. 

To simplify notation, we write st for 2*-3* in subscripts of v. By the 
definition of Y^o in [18, §23], v8t+i=v8t+oHa, Wat)*; so by XV, 
H^a,wst)* is recursive in HVst+1 with Gödel number <r(z>8*, £(#, w,*)*), 
call it Bi. Thence by X, H^a,w8ty* is recursive in HVgt+1* with Gödel 
number SY(g, BO, call it B. But »,H-I<O»«*+2, SO ^ S < + I * ^ O ^ ^ + 2 < O 3 - S V 

= £(a, w) ; so by XIV, HVst+1* is recursive in H^a,w) with Gödel num­
ber p(v8t+i*, %(a, w)), call it C. Combining the recursivities with re­
spective Gödel numbers A, B and C, we can write Po(&, w8t) 
==G^(a,w)(w, a, w, s, /), where w is a Gödel number of u, and 
G%(u, a, w, s, t) is partial recursive uniformly in A. Thence by two 
successive applications of the method of proof of VII* (noting that 
\stG£(u, a, w, s, t) is completely defined for the A, u, a, w considered), 

a, w, s, t) ^H^a,w)**(0(u, a, w)) with a primitive 
recursive d. So if h2 is a uniform Gödel number from A of \uaw 
A{9{u1 a, w)), then So ' 1 ^ , u> a> w) *s o n e from H^a,wy* of 
\(s)(Et)Po(a, w8t), i.e. of XPo(a, w). So it suffices to take v{a, w) 
= Sl'1(h21 u, a, w) for u a Gödel number of v. CONCLUSION. Let 
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2 1 

(So (Ai, a, w) if R(a, w), 
x(s, a> w) = < 3,i . — 

\So {hi, z, a, w) if i£(a, w). 
By the cases it suffices to take v(a, w)=x(u, a> w) for u a Gödel 
number of x(u, &> w). By III , such a u can be found. 

Thence taking w==l and noting (6), \P(a) is recursive in H^a,i)** 
with Gödel number v(a, 1), call it D. 

We can choose z so that (writing zn~$i(zy wo)) 

2 is simply a Gödel number of 

Zo €(*, 1)* 
i<nat(J) 

where nat(Y) =p>nn<tt = no. Let ;y = 3-5*. Then yGO. Also za+i 
= 2a+o£(#, 1)*. So by XV, H^a,D* is recursive in HZa+l with Gödel 
number cr(s0, £(a, 1)*), call it Ei. Thence by X, H^a,i)** is recursive in 
Hza+l* with Gödel number Sl'1^, Ei), call it E. But za+i<oZa+2, so 
2a+i* ^ oZa+2 < oj ; so by XIV, iï*a+1* is recursive in Hy with Gödel 
number p(£a+i*, 3/), call it F. 

Combining the recursivities with Gödel numbers D, E and F, we 
can write P(a) ^GHy(a) where GA is partial recursive uniformly in A, 
Thus P(a) is general recursive in Hy. 

XXV. The predicate aÇLOis expressible in the form (a) (Ex)R(a, a, x) 
with R recursive, and to each recursive predicate R(a, a, x) there is a 
primitive recursive function £(a) such that (a)(Ex)R(a, a, x )=^(a )GO. 

In brief, a GO is a complete predicate of the form. This is the main 
result of [18]. To summarize the proof, a<EO can be expressed arith­
metically, except for the stipulation that a certain recursive linear 
ordering is a well-ordering, which can be accomplished by using a 
universal function quantifier (a). For the second part, we put 
£(a) =£(a, 1) after strengthening X X I I I to assert also that %(a, w) Ç.0 
only if S%a is well-ordered (by managing + 0 so that u+oyÇ2O 
->u, yeO). 

In attempting to make the foundations of analysis more construc­
tive, one may at tempt in various situations to replace the uncount­
able infinity of the number-theoretic functions by a countable class 
of such functions. It is thus of interest to inquire how large a class 
may be necessary in a given situation. Questions of this kind have 
been considered by Kreisel [20; 21 ] and the author [15; 17]. Using 
terminology suggested by Kreisel, a class C of functions is a basis for 
a class D of predicates of a function variable, if for every predicate 
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B(a) of D, (Ea)B(a)^(Ea)[aeC&B(a)]. 
Already in the case D consists of the predicates (x)R(a, x) with R 

recursive, a surprisingly large class C of ex's is necessary. In [17, 5.5] 
we observed that the functions general recursive in 1-function-
quantifier predicates are a basis, while for any fixed y GO those gen­
eral recursive in Hy are not, but left open the possibility that the 
functions general recursive in predicates expressible in both 1-func­
tion-quantifier forms might be. Now we shall show, as an application 
of X X I V with XXV, that they are not. 

XXVI . There is a recursive predicate R(a, x) such that (Ea) (x)R(a> x) 
is true y but (x)R(a, x) is f als e f or every function a general recursive in 
predicates P i , • • • , Pi expressible in both the 1-function-quantiûer 
forms of (b). 

PROOF. We can take the predicates Pi , • • • , Pi expressible in both 
1-function-quantifier forms to be one 1-place predicate P ; in fact, 
after contracting each Pi if necessary to a 1-place predicate Pt-, by 
X X we can use P(a)=PTm(a,i)+i([a/l]) where a— [a/7]/+rm(#, /) 
[16, p. 223]. _ 

The R(a, x) will be T\(â(x), ƒ, ƒ) for a number ƒ to be selected. 
Consider the predicate 

(EP)(Ea) [{P is expressible in both 1-function-quantifier forms} 

& {a is recursive in P} & (x)Ti(a(x)} a, a)]; 

let it be abbreviated (EP) (£a )A(P , a, a). Obviously 

(1) (£P)(£a)A(P, a, a) -> (Ea)(*)Ti(ffi(*), a, a). 

Assume A(P, a, a). Then by XXIV, there is a y such that y GO 
and P is recursive in Hy, Then a being recursive in P is also recursive 
in Hy, say with Gödel number e. Then by I* (since a is completely 
defined, as is to be understood), (i)(Et)Tiv(e, i, t). Also a(x) 
= I I K * Pi e x P $iv(e, i) + 1, and hence T\(ct(x), a, a) can be rewritten 
(Ew) [w = JJii<xpi exp$?iv(e, i) + 1 &T}(w, a, a) ], which is of the form 
{Ew)RHy(x, e, a, w) where RA is partial recursive uniformly in A. By 
the method of proof of VII*, {Ew)RHv{x, e, a, w)^Hy*(6(x, e, a)), 
with 6 primitive recursive, for values of yy x, e, a which make 
\wRRy{x) e, a, w) completely defined; but yG.0 and (i)(Et)Tiv(et i, t) 
guarantee this completeness. Similarly (Et)Tfv(e, i, t)^Hy*{d{e1 i)). 
Altogether, from A(P, a, a), and hence from ( £ P ) ( £ a ) A ( P , a, a), we 
thus infer 

(Ey)(Ee) [yGO&c (i)Hy*(B(e, i)) & (x)Hy*(d(x, e, a))]; 
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write this (Ey)(Ee)B(y, e, a). Conversely, from (Ey)(Ee)B(y, e, a) we 
infer (EP)(Ea)A(P1 a, a), by taking for P the predicate Hy (cf. XXI) 
and for a the function recursive in Hy with Gödel number e. 

In (Ey)(Ee)B(y1 e, a), by XXV we can replace y £ 0 by (a) (Ex) 
Ri(y, a, x) with recursive Pi , and by XXI we can replace Hy*(c) by 
(a)(Et)Ti((r(y*))oy c, t), after which replacements the resulting ex­
pression will reduce by the method of proof of XVI to the form 
(a)(Ex)R(a, a, x) with recursive R. 

So we have 

(2) (EP)(Ea)A(P, a, a) s (a)(Ex)R(a, a, x). 

But by XVII , for some number / , 

(3) (a)(Ex)R(a1 a, x) s (OL)(EX)TI(<X(X), j , a). 

Substituting ƒ for a in (1), and in (2) with (3), 

(4) (EP)(Ea)A(P, a, ƒ) -> (Ea) (x)Ti(â(x),ƒ,ƒ), 

(5) (a)(E*)rî(a(*) f ƒ, ƒ) s (EP)(Ea)A(P, a, ƒ). 

Assuming (cO(Ex)Pj(â(x), ƒ, ƒ), by (5) and (4) we could infer 
(Ea)(x)T\(a(pc)y ƒ, ƒ), i.e. fa)(Ex)7t(a(x), ƒ,_ƒ). So by reductio ad 
absurdum, (a)(Ex)T\(â(x), ƒ, ƒ), i.e. (£a)(x) r*(â(x), ƒ, ƒ). 

Finally, from (a)(Ex)T\(â(x)y ƒ, ƒ) by (5), we have (EP)(Ea) 
A(P, a , / ) , which can be rewritten 

(P)(a) [{{P is expressible in both 1-function-quantifier forms} 

& {a is recursive in P} } —» (X)JTI(Ô:(X), ƒ, ƒ)]. 

7. Both 1-function-quantifier forms relative to Q. The theorems 
have versions relativized say to a 1-place predicate Q. For ^ the 
representing function of Q, we write T^a(z, a, x) = ^ ( ^ ( x ) , â(x), 2, a) 
zzTi,l(a(x), z, a). Using functions partial recursive in Q instead of 
partial recursive absolutely, we obtain a system of notation for 
ordinals constructive in Q, with notions 0Q, <$, | | Q, co?, + 0 , S o m 

place of 0 , <o , | | , «i, + o , S o [17, 6.4; 18, §30]; the superscript for 
+o , S o is "*" rather than "Q" because only the number 1 of the 
arguments of Q matters. Now we define J9?(a) = Q(a); H%(a) 
^(Ex)T^HQy(atafx) ilyeOQ;2indHi5y (a)^H^Q(a)i ((a)0) if 3-5*^0* 
and yn~^i(y, no). In the case of a statement such as "A is recursive 
in 5 " which is already relative, the direct relativization to Q is "A 
is recursive in Q, B". However in most such cases to be considered, Q 
will be recursive in the P , so "<2," need not be inserted. We have in­
serted the superscript (iQ'" on the "TV' in the definition of H% be-
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cause the proofs are easier using the direct relativization, although the 
degrees of the predicates Hy would be the same without it [l7, 6.8], 

XXVII . Theorems X IV-XXVI hold when in place of the notions 
1 recursive', 'T"', 'T\', lT%tfi\ 'arithmetical', 'analytic', 'k-function-
quantifier forms', lO', ' < o \ ' | | ' , ' + o \ 'Hy', 'p', 'a', 'r', i' we use 
'recursive in Q', T?*0", 'Tfl', 'Zf*°^', 'arithmetical in Q', 'analytic in 
Q', 'k-function-quantifier forms relative to Q', '0Q', ' <$', ' | \Q', ' + o \ 
'Hy', 'p1', V1 ', V1', '%Q', respectively, except that p1, a1, r 1 are primitive 
recursive simply, in XIV px(u, y) is a Gödel number of H® from Q, H® 
{and similarly cr1 in XV) but also there is a function pQ(u, y) partial 
recursive uniformly in Q which gives a Gödel number of H® from Hy 
simply, and in X X I V we use recursiveness simply in H y (call them then 
XIV*-XXVI*) . 

PROOF. For XIV*, cf. [17, 6.6]. For XXIV*, we relativize the proof 
of X X I V directly, using p1, a1 and a primitive recursive function 
vl(a, w) which gives a Gödel number of \P$(a, w) from Q, H%(atWy*. 
Thus we establish that the P(a) is recursive in Q, H y for some 
y(~i.OQ; but by the version of XIV* with pQ(u, y), Q is recursive in 
H® (with Gödel number p<>(l, y)). 

Let us say a predicate P is hyperarithmetical (hyperarithmetical 
in Q), HP is recursive in Hy for some y GO (Hy for some ySOQ), or 
equivalents by XX, X X I and XXIV (XX*, XXI*, and XXIV*) if 
P is expressible in both 1-function-quantifier forms (both 1-function-
quantifier forms relative to Q). We choose the name because the 
predicates recursive in Hy for some j G O constitute the extended 
arithmetical hierarchy. 

The relation 'P is hyperarithmetical in Q' is obviously reflexive; 
and it is transitive, by use of the case of XX* for k~0 and with a 
free function variable a [17, 5.2], followed by contraction of adjacent 
like function quantifiers (a) (/3) or (Ea)(Ej3). Hence 'P is hyper­
arithmetical in Q and vice versa' is reflexive, symmetric and transi­
tive, and gives rise to a notion of hyper degree analogous to the notion 
'degree' for 'P is recursive in Q and vice versa'. The hyperdegree of 
P is less than that of Q, if P is hyperarithmetical in Q but not vice 
versa. Predicates of the same degree are a fortiori of the same hyper­
degree. If P is of lower degree than Q, a fortiori it is of the same or 
lower hyperdegree. A predicate hyperarithmetical in a hyperarith-
metrical predicate is hyperarithmetical (using X X with free a and 
contraction). 

If A is hyperarithmetical in B, and RA is recursive in A, then 
(a)(Ex)RA(a, a, x) is expressible in the form (a)(Ex)RB(a, a, x) with 
RB recursive in B (using X X * with free a and contraction). Hence if 
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further (S5 is a complete predicate of the form (a)(Ex)RB(a, a, x) 
(cf. VII, XIX*) , then (a)(Ex)RA(a, ce, x) is recursive in SB . Applying 
this in two directions to predicates Qi, Ç2 of the same hyperdegree, 
the degree of a complete predicate SQ of the form (a)(Ex)RQ(a, a, x) 
with RQ recursive in Q (which is the maximal degree for predicates 
of the form) depends only on the hyperdegree of Q. The degree and 
hyperdegree of (SQ are greater than those of Q (using XVIII*) . 

Using 'hyperarithmetical' instead of 'arithmetical', not only does 
the analog of VIII come to hold (cf. the remarks preceding XX) , but 
also the following analog of half of XI holds. 

XXVII I . For each k^O: The predicates hyper arithmetical in predi­
cates expressible in the k-function-quantifier forms of (b) are expressible 
in both the k + l-j-unction-quantifier forms. 

Using X X with free a and contraction. Similarly we have a 
XXVII I* for the forms relative to Q. 

At the present writing we do not know whether the analog of the 
converse part of XI holds. Consequently we do not know whether 
the hierarchies analogous to the two of XI I are equivalent with re­
spect to degrees (after their first two members). Thus let %lo(a) 
~2o(a)^a = a; let Sfti, % , • • • be the predicates of the upper row of 
XVI I I ; and let 8jb+i(a)s(a)(E*)lf**(a, a, x). 

X X I X . For each k^O: Sfta+i is expressible in a k + 1 -function-quanti­
fier form of (b), is of maximal degree for predicates so expressible, and 
is of higher degree and hyperdegree than %t. &+i is expressible in a 
k + 1 -function-quantifier form of (b), and also in the form (a) (Ex) 
R*k(a, a, x) with R*. recursive in 8&, is of maximal degree for predicates 
expressible in the latter form, and is of higher degree and hyperdegree 
than 8jfc. (So 8&+1 is of degree ^ the degree of Sflk+i.) 

An X X I X * refers similarly to XVII I* ( % Q ( a ) s 8 o W s o W , etc.). 
X X X . There is a primitive recursive function vx(a) such that, for any 

1-place predicate Q, Q(a)^v1(a)E:0Q. 
We make vl(a) a notation for o) exactly when Q(a) [17, 6.4], 
By XXV, a GO is of maximal degree for predicates (a) (Ex)R(a, a, x) 

with R recursive. By X X X , Q is recursive in a GO 0 ; so by XXV*, 
a<E.OQ is of maximal degree for predicates (a)(Ex)RQ(a, a, x) with 
RQ recursive in Q. The degree of a^0Q depends only on (and the 
hyperdegree of H® for any ^ G 0 Q is) the hyperdegree of Q; for Q 
hyperarithmetical, the degree of aÇiOQ is that of a GO (and H$ for 
yÇzOQ is hyperarithmetical, i.e. of minimal hyperdegree). Now 
aGO, a<EO° (where 0 ° = 0 X a a G o ) , a<EO°° (where 0 0 ° = 0X a a G o°) , 

• • • are of the same respective degrees as 81, 82, 83, • • • . 
Instead of successive systems of notations for ordinals of the first 
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and second number classes 0, 0°, 0°°, • • • , the first constructive 
and the others each constructive in the predicate of being a notation 
of the preceding system, we can introduce higher constructive num­
ber classes in the manner indicated in Church-Kleene [S]. The rela­
tions between these two ways of extending the representation of 
ordinals (cf. [17, end 6.4] and Spector [28, §8]) and the correlation 
of predicates to ordinals are being investigated. 

Hierarchies can be set up similarly to the analytic hierarchy but 
using function variables of higher finite types (at least). For these we 
have established the analogs of a number of the theorems considered 
above for the arithmetical and analytic hierarchies. We plan to discuss 
these hierarchies in a paper to be entitled "Analytic predicates and 
function quantifiers of higher finite types." That new number-theo­
retic predicates are definable by use of successively higher finite types 
of variables was already known from Tarski [29]. 

Mostowski [22] compared the arithmetical hierarchy with the 
hierarchy of projective sets studied by Lusin and others. Under his 
comparison the analogy was imperfect (cf. our [14]). There are fur­
ther possibilities for the utilization of analogies in this direction, 
which J. W. Addison, Jr. plans to discuss. 
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