
VARIATION OF DOMAIN FUNCTIONALS1 

M. SCHIFFER 

1. Introduction. Let D be a domain in an m-dimensional space and 
<I>[D] be a number which depends on the domain. We shall call 
<i>[D] a domain functional. Insofar as D is also characterized by its 
boundary C or its complement D, we may sometimes consider the 
functional <fi[D] as dependent on C or D instead of D. The problem 
with which we are occupied is to establish a calculus for the func­
tional with respect to changes of its variable; in other words, a cal­
culus of variations for <t> [D ]. 

We give the following examples of domain functionals: The volume 
V[D] of the domain and the surface area A [C] of its boundary which 
are elementary geometric concepts. Let V2 be the Laplace operator 
and consider the eigenvalue problem V2u+\u = 0 with the boundary 
condition w = 0 o n C. The eigenvalues A„ [D ] of this problem are often 
studied domain functionals. The corresponding eigenfunctions uv(x) 
taken at a fixed point x may be considered likewise as domain func­
tionals. Finally, we mention the Green's function of D with respect to 
Laplace's equation G(x, £). If we consider both its argument points x 
and £ as fixed parameters, it becomes a functional of D. 

The first domain functionals of nonelementary character to be 
studied seem to have been the eigenvalues X„(D) of a plane domain 
[17] and the electrostatic capacity of a three-dimensional conductor 
[ l5] . Since both these quantities are closely related to the Green's 
function of the domains considered with respect to Laplace's equa­
tion, their theory can be reduced to that of the Green's function. 
Hadamard treated G(xy £) from the general point of view of func­
tional analysis and gave for the first time a systematic basis to the 
whole problem complex [7]. 

In order to study the dependence of a functional on its variable, we 
have, in the spirit of classical analysis, to investigate how the func­
tional changes under an infinitesimal change of the domain. Hada­
mard assumed that the domain D is bounded by a closed smooth 
surface C. He deforms C into a surface C* by pushing each point f 
on C by an amount hn in the direction of the exterior normal. Under 
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certain restrictive assumptions on on, we can assert that C* is also a 
smooth surface which bounds a domain D* with a Green's function 
G*(x, £). If on>0, G*(x, §) is well-defined in D and, by Green's 
identity, we find 

(LD " J i c r ^ — " ^ e " i r J * 
Now, G ( r , § ) = 0 o n Cand 

G*( f+8r > ö=G*( r > €) + (aG*/3n)5»+ • • — 0 . 

Hence obviously 

(1.2) 5G(x, 0 = 1 1 W o \ 
J J c an dn 

This is Hadamard's variational formula for the Green's function. 
Though the above derivation is purely formal, it can be justified if 

the surface C is regular enough and many interesting applications can 
be made. Since dG/dn<0 on C, we recognize, for example, that SG>0 
if o n > 0 , that is the monotony of the Green's function in dependence 
of the domain. Our formula would, a t first, guarantee this monotonic-
ity only for domains with sufficiently regular boundary. But it is 
easy to extend this result to the most general domains, since every 
domain can be approximated arbitrarily by domains whose boundary 
is even analytic. 

Much deeper results can be derived by similar considerations; each 
time when we have a functional of D which is a combination of 
Green's functions and various partial derivatives of Green's functions 
such that the coefficient of bndc in the variational formula is positive, 
we arrive at a monotonicity theorem for this functional. 

Similar variational formulas can be easily established for the 
Green's functions of other partial differential equations of elliptic 
type, for higher orders, and for different boundary conditions. 
Hadamard studied, in particular, the Green's functions for the bi-
harmonic equations which play a central role in the theory of elas­
ticity of plates. But while the theory of boundary value problems in 
partial differential equations proceeded to more general domains, D, 
the variational method was inherently tied to a very restricted class 
of regular domains. Even very simple extremum problems for do­
main functionals could not be solved by variational methods, since 
one is not sure, a priori, that the sought extremum domain is regular 
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enough to admit a variational formula. I t is clear that the difficulty 
lies in the kinematics of our variation. Since we describe the transi­
tion from one domain to its neighbor by a normal shift, it is obvious 
that the normal a t the varied points of C will play a role in the varia­
tional formula, and that we shall, a priori, exclude all domains D from 
the theory whose boundary C does not possess a normal a t each point. 

2. Theory of univalent functions. The theory of domain functionals 
was applied in a precise and successful manner at first in the theory 
of conformai mapping. Let A be a domain in the complex s-plane 
which contains the point at infinity. We call a domain D in the com­
plex w-plane conformally equivalent to A if there exists in A a uni­
valent analytic function which has near z = oo the development 

(2.1) w=f(z) =z + a0 + — + • • • 
z 

and maps A onto D. Since D determines ƒ (z) in a unique way, we may 
consider all coefficients av[D] as domain functionals of D and pose 
various extremum problems with respect to them, de Possel [16] 
asked for a domain D which is conformally equivalent to A and for 
which 

(2.2) Re {aJZ)]} = max. 

The existence of such a domain is insured by theorems on the nor­
mality of the family of univalent functions with the development (2.1) 
at infinity. There is only the question of characterizing the extremum 
function, de Possel showed that the extremum domain D consists of 
the whole w-plane slit along rectilinear segments parallel to the real 
axis. Since the existence of the extremum domain is sure, this consti­
tutes an existence proof for a canonical conformai mapping. Since de 
Possel's proof many other canonical mappings have been derived in 
the same way. The preceding reasoning shows the great value of the 
variational method for the existence proof in complicated boundary 
value problems. The method is to be clearly distinguished from ex­
tremum methods as, for example, Dirichlet's principle. There we 
work with a fixed domain and a very wide class of admissible func­
tions, while in our case we are dealing only with analytic univalent 
functions but varying domains. 

Another classical problem in conformai mapping deals with the 
family of all functions 

(2.3) ƒ(*) = z + a2z
2 + • • • + anz

n + • • • 
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which are univalent in the unit circle \z\ < 1 . This family plays an 
important role in the general theory of conformai mapping and uni-
formization. I t is a normal family which implies again that each 
sensible extremum problem has a solution, that is, at least one ex-
tremum function. The classical problem of the theory, as yet unsolved, 
is the question of max \ay\ for the class %. Bieberbach's conjecture 

(2.4) \o,\£v 

which is proved for p = 2, 3 attracted the attention of many mathe­
maticians because of its great simplicity. 

Each function f(z)(Z$ determines a domain D in the complex 
plane which may be considered as the graphical representation of 
ƒ(z) and, conversely, f(z) and its coefficients av may be conceived as 
functionals of D. Let now <i>{z) be the inverse function of f(z) which 
maps D onto the unit circle; then 

(2.5) - —log | * ( « ) | = G(*,0) 
Z7T 

is easily seen to be the harmonic Green's function of D with the 
source point at the origin. Thus, the coefficient problem for univalent 
functions may be considered as an extremum problem for the Green's 
function of a domain D. That this point of view is natural is seen 
from the following fact. The function c/>(z) which is nearer to the 
Green's function than its inverse f(z) also gives rise to a coefficient 
problem. This problem is simpler than the preceding one and was 
solved completely by Löwner in 1923 [ l l ] . Thus, the problem 
closer to the Green's function problem seems for this reason to be 
easier to handle. 

In his classical paper of 1923 Löwner considered a sequence of vary­
ing domains which depend on a parameter / as follows. Let T be a 
Jordan arc z(t) which runs from z(0) to infinity as t runs from zero to 
infinity. Let Tt be the subarc of V between z(t) and infinity and let 

(2.6) ƒ(*,*) = X>,Ws" 

be the function which maps the unit circle onto the complex plane 
slit along the arc IV Then, f(z, i) is differentiable in / and satisfies a 
simple and elegant first order partial differential equation in z and t. 
On the other hand, Julia [9] transformed Hadamard's variational 
formula for the Green's function into a variational formula for the 
corresponding mapping function f(z) and Biernacki [l ] showed that 
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Löwner's differential equation follows from Julia's formula by a 
proper passage to the limit. Thus, one of the most successful methods 
in the theory of univalent functions was tied to Hadamard's varia­
tional method. 

In the special case of the Laplace equation in two variables there 
exists a simple device in order to extend Hadamard's formula to gen­
eral domains and thus to make it applicable to extremum problems. 
This device is based on the fact that a harmonic function in two 
variables remains harmonic under conformai mapping; if u(z) is har­
monic in x, y (z = x+iy), then w [ƒ($")] is harmonic in £, rj (Ç = %+ir)). 
Let now D be a domain in the s-plane with finitely many analytic 
boundary curves C; let A be a subdomain interior to D with finitely 
many analytic boundary curves T. Let f(z) be regular analytic out­
side of A; then z* = z+ef(z) will be regular analytic on C and, for 
small enough e, even univalent. Hence, the curve system C will be 
mapped onto a new curve system C* which determines a new domain 
D* with the Green's function G*(z; f). Clearly 

(2.7) g.(«, f) = G*[z + «ƒ(*), f + «/(f)] 

is harmonic in D —A for zT*f and vanishes for z or f on C. We assume 
that 0, f lie in D— A and apply Green's identity: 

«.(*, f) - G(«, f) 
(2.8) r r *?(*,*) W , m 

*•& f) — G{t% z) — ds. 
J c+v L on an J 

Since G(t, z) as well as g(t, f) vanishes on C, there remains only the 
integration over the curve T, interior to D. 

Formula (2.8) was derived for a domain D with analytic boundary 
C; but now we may extend this formula to the most general case C 
by approximating C by analytic curves. Using theorems on the uni­
form convergence of the corresponding Green's functions in a closed 
subdomain of D, we can justify the above result for the general case. 

The law of deformation 

(2.9) z* = z + ef(z) 

defines to the most general boundary C of a domain D a new boundary 
C* if C lies outside of A and if e is small enough. For most applica­
tions it is sufficient to choose f(z) in a very special way, namely, 

(2.10) ƒ(*) = — , zoED. 
z — z0 
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Using variations of this type, numerous extremum problems in the 
theory of univalent functions could be treated [6; 19; 20; 21 ]. One 
of the simplest and most important results states that the extremum 
functions of the coefficient problem are analytic on the periphery of 
the unit circle with the exception of finitely many points. 

More precisely, a function f(z) belonging to a maximal value of 
\an\ satisfies an ordinary differential equation 

(2 .H) f(*)*Pn\f(z)-*] = *-WQn(z) 

where Pn and Qn are polynomials whose coefficients depend in a speci­
fied manner on the first n coefficients of f(z) itself. I t can be shown 
that the function 

(2.12) ƒ(«) = — i — = z + 2*2 + • • • + ns» + . . . , 
(1 - z)2 

which is the conjectured extremum function for all values of n> satis­
fies the above functional-differential equation. 

Teichmüller has proved a converse of the above theorem [23]. 
Namely, suppose that a univalent function ƒ(z) satisfies a differential 
equation of the type (2.11) with any polynomial 

(2.13) Pn(oc) = aix + a2x
2 + • • • + aw_i a*-1, an_i = 1 ; 

then Re {an} will be maximal for this function with respect to all 
functions of the family % which have the same first n — 1 coefficients 
as f(z). This result shows that every univalent solution of (2.11) is 
in some sense an extremum function. However, in order to decide 
whether f(z) is the extremum function of some specific extremum 
problem, more powerful methods seem to be needed. 

It is natural to expect additional information from a theory of the 
second variation for the functionals considered. Since the vanishing 
of the first variation ensures already the analyticity of the boundary 
of the extremum domain, it seems sufficient to establish a formula 
for the second variation in the Hadamard kinematics. However, the 
computational difficulties in deriving the second variation for the 
Green's function are considerable; the formula was established only 
very recently and will be given in §4. 

3. General interior variations. The variational kinematics used in 
the preceding section can be easily applied to much more general 
domain functionals. In particular, it permits us to deal with func­
tionals which are connected with boundary value problems for self-
adjoint elliptic differential equations. For the sake of simplicity, we 
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shall illustrate the method by treating Laplace's equation in three-
space. 

We define in the space with coordinates Xi (i = 1, 2, 3) a vector field 
Si(x) which is twice continuously differentiate and consider the trans­
formation of the whole space 

(3.1) x? = Xi + eSi(x) 

which depends on the real parameter e. If € is small enough, this trans­
formation will be univalent in a given sphere of radius R. Every do­
main D in this sphere is mapped topologically onto a domain D* and 
we denote the corresponding harmonic Green's functions by G(x, £) 
and G*(x, £), respectively. Our problem is to express G*(x> £) in terms 
of G(x, £) and of the transformation vector field. We shall call the 
deformation of a domain by means of such a vector field an interior 
variation. 

In order to study G*(x, £), we consider the function 

(3.2) g(*,z;*) -G*(^*w,rœ) 
which is defined in the original domain D, is twice continuously dif­
ferent ia te there if #5^£, and which vanishes if x or £ lies on the 
boundary C of D. In the case of harmonic functions in the plane, we 
utilized a deformation vector field Si(x) of particular type, namely, 
we chose Si so that ƒ(z) = Si+iS2 was an analytic function of z = Xi 
+ix2 outside of some subregion A. This particular choice had the ad­
vantage that g(x, £; e) was still harmonic in D outside of A for arbitrary 
choice of e. Now, the situation is more difficult; we cannot preserve 
the harmonicity of G(x, £) under the deformation, but we are led to a 
new differential equation for g{x1 £; e) which expresses that G*(x*, £*) 
is harmonic in D*. In fact, a simple calculation shows that Laplace's 
equation in Z>* is translated into 

(3.3) Z r 2>«—«(*.*;«))-o 
t=l OXi\ k=l OXk / 

with 

» dXi dxk d (* i* , #2*, #3*) 
(3.30 Aik = Aki = 62_< — r — r > e = — ; — " 

y=i dxf dxf d(Xi, X2, Xz) 

We observe that the coefficients of the new differential equation de­
pend analytically on e. 

I t is clear that g(x} £; e) and G*(x, £) are equivalent functions and 
that the knowledge of one leads to the other in an elementary way. 
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We have expressed the Green's function G*(x, £) for the fixed Laplace 
equation and a variable domain D* in terms of the Green's function 
g(x, £; e) for a varying differential equation (3.3) but with respect to 
the original fixed domain D. This was achieved by transplanting 
G*(x, §) back into D by use of the inverse transformation of (3.1). 

The dependence of the solution of a partial differential equation 
Le[u] = 0 with fixed boundary value on the parameter e occurring in 
the coefficients of the equation has been frequently investigated. 
Hubert applied the parametrix method successfully for this problem 
[8]. I t can be shown [3] that in our particular case the Green's func­
tion g(x, £; e) depends analytically on the parameter e. 

We may develop g into a power series in e and calculate without 
difficulty the coefficients of this development. These are clearly 
closely related to the variations of the respective orders of the 
Green's function G(x, £). We find, for example: 

r r r A AS<0?) 
== I f f ^ ^ ( i j ; «, f ) — drjid7j2drjz 

J J J D *,fc-ri orjk 

(3.4) ~g(x,i;e) 
de 

with 

dG(Vt %) dG(ri, Ö , dG(i, x) dG(y, *) 
Tik{vl x> i) = 

(3.4') drji drjk drjk drji 

The tensor Tik(rj; x, J) plays a central role in the variational theory of 
the Green's function. I t may be called the Maxwell tensor of D; if 
we put x = £, we see in fact that Tik(rj; xy x) is the classical Maxwell 
tensor of the electrostatic field created in the domain D with grounded 
conducting walls C by a unit charge at the point x£ .D. 

The tensor Tik is obviously symmetric in its indices as well as in x 
and {.It satisfies the divergence condition 

(3.5) E Tik(v; *, f) = 0, * = !. 2> 3-

This identity indicates that formula (3.4) can be simplified consider­
ably by use of the divergence theorem; we can reduce the triple in­
tegral into an integral over the surface C of D provided that C is 
regular enough to admit the application of the divergence theorem. 
We have to observe in the transformation of the integral that Tik 
becomes infinite for rj = x and rj=l* and have to consider the residues 
from these singular points. Carrying out all the indicated steps, we 
arrive at 
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(3.6) — G*(*f & 

which is exactly Hadamard's variational formula (1.2). We obtain 
in this way a new and precise proof for Hadamard's classical formula 
under the weakest assumptions. On the other hand, (3.4) appears 
now clearly as the generalization of this formula to the case of arbi­
trarily bounded domains D. 

A completely analogous formula holds also in the case of two-
dimensional harmonic Green's functions. In this case it happens that 
the trace X)»T« of the Maxwell tensor vanishes identically. Hence, 
Tik has only two essential components, and we have 

(3.7) Tn = — T22, T\2 = T21. 

If we choose now the vector field Si(x) in such a way that 

dSi ö*S*2 dSi d<S*2 

dxi d%2 d%2 dxi 

we see that the integrand in (3.4) vanishes identically. This means, 
of course, the invariance of the Green's function under conformai 
mapping. I t is now clear why the method of interior variation is par­
ticularly successful in the two-dimensional case ; by choosing S to be 
an analytic vector field in the whole plane except for isolated singular 
points, we can express the variation of the Green's function in terms 
of its values and the values of its derivatives a t these distinguished 
critical points. Extremum conditions on the Green's function which 
have, in general, the form of integro-differential equations reduce in 
this case to ordinary differential equations. 

We illustrate the general variational method in a relatively simple 
case. We consider a plane, finite, and simply-connected domain D 
with boundary C and the eigenvalue problem 

(3.9) V2u + \u = 0, u = 0 on C. 

Let z0 be the complex coordinate of a point in the 3-plane but not on 
C. We use the deformation 

(3.10) 0* = z +—-—, 
Z — ZQ 

with complex parameter e, which is univalent in |3—3o| > H 1/2 and 
which maps therefore, for small enough e, D into a domain D*. From 
the general variational procedure, we find that each eigenvalue \(D) 

le=0 -ƒƒ. 
dG(ri, x) dG(V, & 

dn dn 
(S'ti)d<r 
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which is nondegenerate corresponds to an eigenvalue X(Z>*) by the 
formula [4] 

(3.11) 

X(D*) = X(Z>) - Re hre8(z0) (^-^\ 

Here ô(z0) = 0 or 1 if z0 lies in the exterior or interior of D, respec­
tively, and 

d 1 / d d \ 
(3.110 = — ( i ) . 

dzo 2 \dx0 dyj 

o(e) can be estimated uniformly for all domains D whose boundaries 
stay outside of a fixed circle | s — s0 | = a . The above formula applies, 
in particular, always to the first eigenvalue \i(D) which is known to 
be nondegenerate. 

Under the same variation (3.10) the area A(D) is transformed into 

(3.12) A(D*) - A(D) - Re ^2« ƒ ƒ ^ | + o(e). 

We may now treat Rayleigh's problem to find the minimum for the 
product A -Xi. The existence of a minimum domain can be derived by 
use of the conformai mapping function which carries D into the unit 
circle and applying the normality of the family of univalent functions. 
We can characterize the extremum domain by the fact that the first 
variation of \iA has to vanish for each choice of € and z^C. This 
leads to the functional equation 

\ dzo J 4TA(D) J JD (s - zoY 

By a careful analysis of this condition one can show that D has an 
analytic boundary curve C along which du/dn = const. We obtain by 
the variational method less than from the more elementary method of 
symmetrization which has been developed in great elegance by 
Pólya-Szegö [13]. However, the same variational technique can be 
applied in much more general problems where the extremum domain 
will not happen to be symmetric and the method will work as well. 

In §2, we pointed out that the variational theory of domain func­
t i o n a l leads often to important existence theorems. We want to dis­
cuss here a problem which plays a role in applications. Let B be a 
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body in three-space, considered immersed in an incompressible non-
viscous fluid of density 1. Suppose that the fluid stream past the body 
is a stationary irrotational flow with velocity one at infinity and 
direction parallel to the x-axis. We denote the velocity potential of 
the flow by $(x, y, z) ; it is a harmonic function in the domain D out­
side of B except a t infinity and is a t each fixed point in D a domain 
functional of B (or D). If we split off from <j>(x, y, z) the singular term 
due to the source of the flow at infinity, we can write it in the form 

(3.14) 4>(x, y,z) = - x + <p(x, y , z) 

where <p is regular harmonic in D. The quantity 

(3.15) M = f f f (V<p) Hxdydz 

is called the virtual mass of B and plays a central role in the hydro­
mechanics of B ; M is also a functional of B. 

Suppose now that we deform the surface C of B into a surface C* 
of B* by a normal shift on applied to all its points. I t can be shown 
[22] that 

(3.16) ÔM = f f (V<t>)2ônda - ÔV, 

where at the same time the volume V(B) varies according to 

(3.17) dV = f f tnd<r. 

We apply these results to an important problem in fluid dynamics, 
namely, the free boundary problem. Helmholtz was the first to point 
out that the flow past a body B is by no means uniquely determined. 
The moving fluid may bypass the body B and leave also a part of the 
fluid itself adjacent to B a t rest. The part of the fluid at rest together 
with the body B forms a larger body Br whose velocity potential 
<j>'(x, yy z) determines the correct velocity field of the flow. However, 
since the hydrostatic pressure in the resting fluid must be constant, 
it is easily seen that along the surface dividing between resting and 
moving fluid, the so-called free boundary, the velocity has to be con­
stant, tha t is, (V0')2 — const. Hence, under a Sw-deformation which 
affects only the free boundary of the body J5', we should have, by 
(3.16) and (3.17), oM'—jjioV'. Thus, a free boundary leads to a sta­
tionary value for M—ixV. One can now invert the reasoning and pose 
the extremum problem for M—JJLV [l8J. If one can show that a solu-
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tion exists and leads to a regular surface, one arrives at an existence 
proof for an interesting flow pattern. Such existence proof could be 
carried out indeed by interior variations in the case of plane flow 
[5] and of axially-symmetric flow [2], The general case of a flow in 
three dimensions has not yet been solved satisfactorily. 

The alternative approach to the free boundary problem for plane 
flows due to Leray [lO] is based on fixed point theorems in function 
spaces and utilizes therefore also higher methods of functional analy­
sis. 

4. The second variation. The importance of the second variation 
for the theory of domain functionals is obvious. Consider a class of 
domains D and a functional <£ [D ]. Suppose now that any two domains 
DQ and Di of the class can be connected by a continuously varying 
set of domains Dt of the class with O ^ / ^ l . Then <£[£>*] becomes a 
function of the variable /. Suppose further that we can assert d2<t>t/dt2 

> 0 if DOT^DI. In this case, it is clear that there can exist only one 
domain in the class for which 8<fi = 0 for all admissible variations and 
which yields, consequently, a minimum of <j>. In many cases, it is 
more important to know that the functional equation implied by 
d<p = 0 has a unique solution than to know the exact value of the 
minimum. This is, for example, the case if the minimum problem has 
been set up artificially in order to obtain an existence proof as in the 
free boundary problem of the preceding section. In such cases, the 
knowledge of the second variation is most useful. Often it will even 
be sufficient to show that d2(t>t/dt2>0 only in the case that S# = 0 in 
order to make analogous deductions. 

As indicated already in §3, it is often easy to find the higher order 
variations for functionals if we use the method of interior variations. 
Returning to the special case of the three-dimensional harmonic 
Green's function, we know already that g(x, £; e) is analytic in e and 
that we can derive formally all coefficients in the power series de­
velopment in e, obtaining finally all desired variations for the Green's 
function. We may express, for example, the second variation of 
G(x, £) in terms of a triple integral over the domain D involving the 
vector field Si{%) and the Green's function itself. We know, however, 
a priori tha t the variation of G must depend only on the shift of the 
boundary C of D and not on the interior values of the field ; for the 
deformation of C alone determines the varied domain D* with the 
Green's function G*. Thus, it must be possible to express the second 
variation of the Green's function in the form of a surface integral 
over C, provided only that the boundary surface C of D is smooth 
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enough. Similar arguments hold, of course, also in the case of varia­
tions of higher order. 

We can give an elegant formula for the second variation of G(x, £) 
in the case that the boundary surface C is three times continuously 
differentiable. We consider a fixed vector field Si and denote by 
Ge(Xy £) the Green's function of the domain D6 which arises from 
D = D0 through the variation (3.1). We define G(x, £) =G0(x, £). Let 

(4.1) N = Sn; 

N is defined on C and n is the exterior normal on C with respect to D. 
By Hadamard's formula (3.6), we have 

(4.2) H(x,Q = ^-G.(x,Q 
0€ 

r r dG^x) dG(ifQ 
= I I — N(fi)da, 

J J c on on 
Here, H(x, §) is regular harmonic in D and a linear functional of the 
vector field S on the boundary C. We can prove [3 ] : 

(4.3) 

= - 2 f f f (v,ffO?, *)-V,#0J, ö)<ftnAi*ftii 
€=0 J J J D 

dG(V, x) dG(V, Ö 

-ƒƒ. bn dn 
k(V)NKv)d(r, 

where k(r]) = l/pi + l /p2 is the mean curvature of C a t the point rj. 
This formula holds under the additional assumption that the vector 
field S has on C exact normal direction; otherwise some additional 
terms will come in depending on the tangential components of S. 
Such effect of the tangential deformation was to be expected in the 
theory of the second variation; for, if we displace each boundary 
point in direction of the tangent plane, we do not affect the domain in 
the first order, but we must expect an influence of the second order 
variation. 

The above formula for the second variation can be simplified con­
siderably in important special cases. Consider, for example, a closed 
surface T which encloses the boundary C of D. Let V{x) be harmonic 
in the shell between C and T and let V = 0 on C, V= 1 on T. In other 
words, V(x) is the potential of the conductor made up of the surfaces 
C and T. The level surfaces 

4.4) V(x) = t, O ^ ^ l , 

are a continuously varying sequence of surfaces Ct between C and T. 
Let Gt(xy £) be the Green's function of the domain Dt interior to Ct. 
I t is then easily shown that 
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ô2 

(4.5) 

= - 2 

We observe tha t 

j J j (Vv "7TG<^> *) ' v * ~7tGt(jii ^ ) d7)ldr}2dm' 

(4.6) Gt(x, Ö = - I\(*, Ö, f = ( E (*< - &)2>) \ 
4TJT(#, Q \ M / 

where Tt(x, £) is regular harmonie in the entire domain D. Since the 
singularity term is independent of the domain, 

dGt __ dTt d2Gt __ d2Tt 

dt dt ' dt2 dt2 

Hence, we find 

d2 

dt2 

(4.8) 

[ E a<a*r«(*«>f *<*>)] 
Li,fc=i J 

= 2 J J J ( V, E «* ) drndritilriz ^ 0 

for any choice of the constants a»- and of the points x(i) in D. We ar­
rive thus at a very general convexity theorem in potential theory and 
the applications indicated at the beginning of this section become 
possible. 

Sometimes we can utilize the formula for the second variation 
more effectively than by just using the fact that it is positive. Take, 
for example, the functional ÜT[B], the electrostatic capacity of the 
body B; it is defined as follows: Let \p(x) be harmonic in the outside 
D of B and have the boundary value 1 on C Then, \p(x) is called the 
conductor potential of B. I t has at infinity the behavior 

(4.9) 4, = — — + o(l/r), r* = £ *• 
2 

X 

and this serves to define the electrostatic capacity i£[.B]. 
Let now Ct be a sequence of surfaces connecting continuously the 

surface C of B with another enclosing surface T and being the level 
lines (4.4) of a harmonic function V(x). The Ct bound bodies Bt with 
exterior Dtl capacity Ktl and conductor potential \f/t- We can show 
from (4.5) that 
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(4-10) jF^-hffLkiïï'*1**'** 
This shows that Kt is convex from below as a function of /. But we 
can estimate the right-hand integral better if we observe that 
h(x) =d\l/t/dt is harmonic in Dt. Then, we have by Green's identity 

(4.11) I I I (Vh-v4/t)dxidx2dx3 = — I I —d<x = 47ra 
J J J Dt J J ctdn 

if limr_»00fe' = #. Hence, by Schwarz's inequality 

(4.12) (4TTÖ02 ^ iff (Vh)*dxidx2dxz- \ \ \ (^ tYdxidx2dxz. 
J J J Dt J J J Dt 

Finally, by applying (4.11) for the case h=\pt and using (4.9), we find 

(4-u) J IL: (V^t)2dxxdx2dxs = AwKt. 

From (4.9) we deduce that \imr^r{dypt/dt) — {dKt/dt) and hence 
(4.12), (4.13) yield 

(4-14) )J)Dyir)dxldX2dX3-K\-ir)-
Hence, (4.10) leads to the differential inequality 

(4.15) Kt d2Kt/dt2 ^ 2 (dKt/dt) 

which means that K^1 is convex from above as a function of L 
This result is the best possible; for in the case that T is a level 

surface \[/(x) = const, of the conductor potential of 5 , it is easily seen 
that Kfl is linear in t. 

As another application, we consider two convex curves Co and G 
in the plane which are described by their supporting functions po(<t>) 
and pi{<i>). We can connect both curves by a continuous sequence of 
convex curves Ct which are determined by the supporting functions, 

(4.16) pfo) = (1 - OM*) + tfi(*)-

In this case, the theory of the second variation yields the formula 

•G,(x, Ö 
dt2 

(4.17) 
^ - 2 ƒ ƒ ( v , —Gt(r,, *)-V, T7G*fo» ö ) < M w * 9 i 
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where Gt is the Green's function of the interior Dt of Cu This result 
leads again to numerous applications and convexity theorems in con-
formal mapping. 

A main problem in applying the theory of the second variation is 
to find a convenient parametrization which permits us to connect 
any two domains of the class considered and which leads, on the other 
hand, to a simple second derivative of the functional in question with 
respect to that parameter. 

5. Transplantation. Till now, we dealt mostly with functionals 
which arise from certain boundary value problems in partial differ­
ential equations. We consider now the important subclass of func­
tionals which are defined as the minimum value of a given positive-
definite integral extended over the domain considered and depending 
on functions of a prescribed function class with respect to this domain. 
The fact that the functional is an actual minimum allows certain 
estimates by use of competing functions which lead to interesting 
inequalities and even to variational formulas. 

We explain the method for the case of the electrostatic capacity 
K [B ] of a body B with boundary surface C and exterior D. We can 
characterize K[B] by the following extremum properties [13; 14]: 

1. Dirichlef s principle: Consider all functions U(x) which have 
continuous derivatives in D, are of order 0 ( l / r ) at infinity, and have 
on C the boundary value one. Then 

(5.1) K[B] = min — f f f (vU)2dx1dx2dx3 

and the minimum is attained for the conductor potential \f/(x) of B. 
Dirichlet's principle leads to easy upper bounds for K [B ] since we 

may choose any permissible function U(x) and find an inequality for 
K[B\. 

2. Thomson's principle: Consider all vector fields q(x) in D with 
continuously differentiable components, which are solenoidal, that 
is, satisfy Vq = 0, are normalized by 

(5.2) f f qnda = 1, 

and vanish at infinity such that |g | =0(r~2) there. Then 

(5.3) T~^ = min I I I q2dx\dx%dxs 
4irK[B] JJJD 

and the minimum is attained by the vector field gf = (l/47rX)V^. 
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Thomson's principle leads to lower bounds for K[B] and is very 
useful in combination with the preceding Dirichlet principle. 

3. Gauss9 principle: Consider all functions fi(P) defined on the 
boundary surface C with the normalization 

(5.5) — = min I I I I (i(x)ij.(£)r(x, Ö - 1 ^ ^ 

(5.4) 

Then 

and the minimum value is attained for fx(x) = — (l/4:wK)d\l//dn. 
Gauss' principle stresses the fact that the capacity is ultimately a 

functional of the surface C only. In physical interpretation, it ex­
presses the capacity in terms of electric charges rather than in terms 
of electric fields. 

We start now with a body B=B(1) and consider the transforma­
tion of the x-space 

(5.6) %i = txi, %i = x2, %z = #3î 

this is a stretching in the Xi-direction in the ratio t'A. The body B(l) 
is deformed continuously through a sequence of bodies B(t) with ex­
teriors D{t), boundaries C(t), conductor potentials ypt(x), and capaci­
ties K(t). Since ^<0(x) is defined in D(to)> clearly 

(5.7) U(x) = \l/hl — xi, x2y xzj 

is well-defined in D(t). I t has the boundary value 1 on C(t) and the 
correct continuity and asymptotic behavior at infinity in order to be 
admissible in the Dirichlet principle (5.1) with respect to D(t). Thus, 
we obtain 

2 2 ~| 

+ ^to',2 + ypt0;z dxidxzdxz 

(5.8) 

where \l/to]i denotes the partial derivative of t/^0 with respect to its ith. 
variable. We may refer back the integration to D(t0) by replacing 
(t0/t)x1 by Xi. This will change also the volume element in the integral 
and (5.8) obtains the form 
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(5.9) t~lK{t) ^ —— f f f [-J*1*!! + ^OÏ2 + «̂oü | W ^ * i 

where the arguments of all ^o; t- are now Xi, x2, x3. Thus, we may put 
this inequality into the form 

(5.90 trlK(t) ^ t~2A + B 

where A and B depend on /0 but not on t. Moreover 

(5.9") CK(h) = CA + B. 

Hence, if we plot t~~lK(t) versus r = /~2, we see that the straight line 
ar+B touches this curve at the point r0 = tö2 but lies elsewhere always 
above it. Hence, the curve t~xK{t) possesses a t r0 a supporting line 
from above. Since to is arbitrary, we proved that t~lK(t) is convex 
from above as a function of t~2. If we did not know already from the 
general theory that K(t) is analytic in /, we could deduce at least 
from the convexity result that K(t) has a derivative in t almost 
everywhere. We can easily derive 

(5.10) K'(t) =—- f f f [^2 + ^'3 - yp\i]dxidx2dxz\ 
4irtJ J J D(t) 

and the differential inequality stating the above convexity 

(5.11) PK"{t) + tK'(t) ^ K(t). 

The basic idea in the above procedure is the transplantation of the 
correct extremum function from its domain D(t0) into another do­
main Dit) where it serves as a comparison function in the extremum 
principle and leads thus easily to an inequality between the func­
t i o n a l of D(tQ) and Dit). This method of transplanting the extremum 
function has been used extensively in the following form. One uses 
one distinguished domain Z>o, which is suspected to be the extremum 
domain, and its extremum function. Transplating this extremum 
function into all admissible domains D of the class considered one 
shows that the functional <t> [D ] by its minimum property is less than 
the value achieved by the transplanted function and moreover that 
this latter value is less than 0[£>o]. This shows that $[.Do ]><£[#] 
and establishes the extremum property of D0 [13]. 

The difference between this well known and useful device and the 
above method is that in the latter we transplant the extremum func­
tion of each domain into each other domain ; in this way, we obtain 
convexity statements and differential inequalities [14]. 
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We can repeat the procedure in the case of the Thomson principle. 
Here, we have to deal with an extremum vector field instead of an 
extremum function. Let q=(qi, #2, #3) be the extremum vector field 
for the exterior D(t0) of the body B(t0). Then 

(S.12) 

( (to \ h (h \ 
t = I tfll # 1 , X2i OCz J , Ç2I %h %2, OCzJy 

to / to \ \ 
— qs[— Xi, x2, x3JJ 

will be defined in D(t) and represent a solenoidal vector field there. I t 
is easily seen that the normalization (5.2) is transplanted also. Hence, 
we may use qt in order to obtain a lower bound for K{t). An easy 
calculation shows that tK(t)~l is convex from above as a function 
of t2. This leads to another differential inequality which combines 
with (5.11) to estimate K"(t) from above and from below. We obtain 
the inequality 

(5.9'") (at2 + b)-1 ^ t~lK(t) g Ar2 + B 

where equality holds on both sides for t = to. Thus, the curve t~~lK(t) 
lies between two differentiate curves which touch for t = to. Clearly, 
t~lK(t) must be also differentiate there and since to is quite arbitrary, 
we have proved that K(t) is differentiate in t everywhere. Thus, 
combining the Dirichlet with the Thomson principle we obtained a 
much stronger result than could have been obtained from each of 
them. 

Finally, we may utilize the Gauss principle by transplanting the 
charge density ixdc in the deformation. This leads to the result that 
tKif)"1 is convex from above as a function of t. This result is an im­
provement on the convexity statement derived from the Thomson 
principle. I t is also easy to read off from the Gauss principle that K(t) 
increases with t; in fact, under transplantation corresponding charges 
are pulled away from each other and the energy of the charge dis­
tribution is clearly decreased and the capacity K is, consequently, 
increased. On the other hand, Kr(t) is given by (5.10) and it is by 
no means clear that this integral must be non-negative. But the com­
bination of the two results leads to the inequality 

(5.13) I I I $Xldxidxzdxz S I I I hPx2 + $x8]dxidx2dxz 

valid for every conductor potential and arbitrary choice of the co­
ordinate system. Equality holds in (5.13) if the body B is a plate in a 
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plane #1 = const. In fact, such a plate is not affected by a stretching in 
the Xi-direction and hence K'(t)^0. 

I t seems that the transformation by stretching is a very special 
kind of deformation and that the results obtained in this way are 
rather restricted. Before discussing other and more general deforma­
tions which admit a similar treatment, we want to show a slight gen­
eralization of the stretching deformation which leads to rather im­
portant applications. We consider the transformation 

re <A\ ' itXl i f Xl~ ° ' 
(5.14) xi = < 

I Xi if Xi S 0, 

t > 0, 
X2 = X2, Xs = ff3. 

This is a continuous transformation of the x-space, but it is no longer 
continuously differentiable. We call it a partial stretching in the re­
direction. 

If we want to apply the transplantation method to the capacity 
i £ [ 5 ] in the case of a partial stretching, we have to observe, at first, 
that the transplanted functions and vector fields have discontinuities 
or discontinuous derivatives along the plane #i = 0. However, it can 
be seen that Dirichlet's and Thomson's principles still hold for ex­
tended classes of functions or vector fields, which include the trans­
planted fields obtained. Hence, it can be shown, as before, that 
t~lK(t) is convex from above in t~2 while tK(t)~l is convex from above 
in 22, even in the case of a partial stretching. The derivative of K(t) 
with respect to t can be shown to be 

(5.15) K\t) = — - f f f fo« + fît - f]i]dxiixdxz 

where D(t)+ is the intersect of D(t) with the half-space Xi^O. 
Since we may put the axes of reference arbitrarily with respect to 

the body considered, we obtain a great variety of deformations of 
the original body under partial stretching. In particular, we may put 
the plane x± = 0 in such a way that it cuts off only a very small part 
of the body B so that the partial stretching becomes a variation of 
a surface element of B. Using our above results, and in particular 
(5.15), we obtain a new approach to variational formulas of the 
Hadamard type. 

Other interesting applications of the transplantation method arise 
in eigenvalue problems. In the membrane equation 

(5.16) V2u + \u = 0, u = 0 onC 

we can characterize the eigenvalues by well known extremum prin-
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ciples. We restrict ourselves here to the lowest eigenvalue Xi(D) of a 
domain D in the (x, ^)-plane. Let u(x, y) be any continuously differ­
entiable function in D which vanishes on the boundary C; then we 
have 

I I (yu)2dxdy 

(5.17) Xi = min • 

I I u2dxdy 

The minimum is attained by the eigenfunction of (5.16) to the eigen­
value Xi. 

I t is easy to find upper bounds for the eigenvalue Xi because of its 
minimum definition; it is, in general, not quite as easy to derive lower 
bounds. Here, convexity statements for the eigenvalue in depend­
ence on some parameter t for a sequence of domains D(t) may be of 
great value. 

We can easily show that under a stretching 

(5.18) x' = tx, y' = y 

we obtain a sequence of domains D(t) with the nth. eigenvalue Xw00 
such that ]Cf=aX*(0 is a monotonie function of t~2, convex from 
above; this holds for every choice of the integer N. Observe that the 
sum considered is not necessarily continuously differentiable in t; it 
may have discontinuous derivatives for the values of the parameter 
t for which X#(0 is a degenerate eigenvalue. The same result holds 
for the eigenvalues of the more general differential system 

du 
(5.19) V2u + \u = 0, h ku = 0 on C. 

dn 
These convexity results have been applied to estimate the eigen­

values for isosceles triangles from the known eigenvalues for the equi­
lateral triangle and their asymptotic behavior for /—>0 and t—*oo [ l2] . 

Consider next the sequence of domains D(t) which are obtained 
from a given domain D=D(0) by the conformai mappings 

(5.20) s* = z + tf(z) 

where f(z) is analytic in D(0). I t is not necessary that all domains 
D(t) lie schlicht over the complex plane; we may define their eigen­
values \n(t) of the membrane problem even if they lie over a Rie-
mann surface. 

If u(xy y) is a correct first eigenfunction of the membrane problem 
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for the domain Z>(0), we may consider u{x, y) referred by z(z*) to 
D{t) as a comparison function for the extremum problem. We may 
assume that u was normalized in D(0) by the condition 

(5.21) f f uHxdy = 1. 
J J D(0) 

Observe that the Dirichlet integral in the numerator of (5.17) is 
invariant under conformai transformation. Thus, (5.17) applied to 
D(t) leads to 

XiW"1 > Xx(O)-1 f f u\x, y) | 1 + *ƒ'(*) \Hxdy 
J J D(0) 

è Xi(O)-1 + Xi(0)-^-2 Re | f f u2f(z)dxdyi . 
>(0) 

This shows that Xi^)""1 is convex from below as a function of t, since 
we can deduce in the same way the existence of a supporting line for 
every value of L 

Using the extremum definition for the higher eigenvalues and the 
same transplantation argument, we can prove that X ^ i X j 1 ^ ) is 
convex from below as a function of t, for every choice of the integer 
N. This result leads to interesting inequalities between the eigen­
values of the membrane problem and conformai moduli of the domain 
D [14]. 

An extension of the preceding convexity result to the more general 
system (5.19) seems not easy. The boundary conditions are only con-
formally invariant if k = 0 and, in this case, we have Xi = 0. Hence, 
no corresponding result is known in the more general case (5.19). 

We do not want to multiply examples, but mention that the trans­
plantation method proved also useful in the theory of torsional rigid­
ity, virtual mass, conformai radius, etc. [14]. 

I t may be of interest to quote a result from the theory of differen­
tial equations of higher than the second order. Consider the differen­
tial equation 

du 
(5.23) V% = Xw, u = — = 0 on C, 

dn 

for a plane domain D with boundary C. Then, it can be shown that 
under a stretching (5.18) of D, the functional \{D) is convex from 
above as a function of f~4. 

6. General method. In the case that <t>[D\ is a functional defined 

file:///Hxdy
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as the minimum value of a positive-definite Dirichlet integral Q[u] 
which is quadratic in its argument function u, we can develop a very 
simple variational theory. We assume that the minimum in Q[u] is 
understood with respect to a well-defined function class % character­
ized by certain continuity and boundary conditions with respect to 
D. Suppose that a transformation 

(6.1) x? = %i + eSi(x) 

is considered which carries D = D(0) into a sequence of domains 
D(e) ; we assume that the functions of the class % are transformed by 
transplantation into D(e) into functions of the corresponding function 
class %€ of the new domain and vice versa. Thus, each admissible 
function u*(x*) in D(e) becomes admissible in D(0) after trans­
plantation. 

The Dirichlet integrals (?€[^*] for the various domains D(e) be­
come after transplantation into D(0) well-defined Dirichlet integrals 
Q[u; e] and are to be considered over the function class %; clearly 
Q[u;0] = Q[u]. 

Let u(x; e) be the extremum function which yields the minimum 

(6.2) 0(e) = Q[u(x; e); e] ^ Q[u0; e], u0 G %, 

within the class $. Obviously 

(6.3) *(«) = *[Z>«] 

and the study of 0(e) in its dependence on the parameter e leads to the 
complete variational theory of the functional 0 [ D ] . 

Observe now that 

0(e) - 0(0) = Q[u(x; e); e] - Q[u(x; e); 0] 

+ Q[u(x; e); 0] - Q[u(x; 0); 0] 

= Q [u(x; e) ; e] - Q [u(x; 0) ; e] 

+ G[«(*;0);e] - Q[u(x; 0);0]. 

Since u(x; e) and u{x\ 0) both belong to the class §, we have by the 
minimum properties (6.2) 

(6.5) Q[u(x;e);e] £ Q[u(x;0); e]; Q[u(x; 0);0] g Q[u(x; e); 0]. 

Thus, (6.4) leads to the inequalities 

Q[n{x\ e); e] - Q[u(x; e); 0] 

^ 0(e) - 0(0) ^ Q[u(x; 0); e] - Q[u(x; 0); 0] . 
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We have, until now, not made any assumption regarding the char­
acter of the quadratic Dirichlet integral Q[u]. We suppose that 
Q[U\ e] has for fixed u(x) a continuous derivative Qi[u; e] with re­
spect to e which is again a quadratic functional of u. We have then by 
the mean value theorem 

(6.7) Q[u; e2] - Q[u; ei] = (e2 - ei)Qi[u; rj] 

where rj is an intermediate value between €1 and e2. We restrict our­
selves to the interval | e\ ^ 1 and assume further that Qi[u; e] is there 
uniformly continuous as a functional of u in the Q[w]-metric and 
that there exist positive constants a, Z>, a, j8 such that 

(6.8) aQ[u] ^ Q[u; e] S bQ[u]; aQ[u] ^ \ Qx[u; e] | g pQ[u]. 

In many important cases, it is possible to verify that all these assump­
tions are fulfilled. 

We derive now from (6.6) and (6.7) the inequality 

(6.9) Qi[u(x; e);Vl]e :g 0(e) - 0(0) g Qi[u(x; 0);rj2]e 

where rji and rj2 lie between 0 and €. From our assumptions (6.8) fol­
lows clearly that 

(6.10) 0(e) - 0 ( 0 ) = 0(e), 

that is, in particular, the continuity of 0(e) at e = 0. 
Next, we observe that 

t* UN G[«(*;0]-G[«(*;0)] 
( 6 . 1 1 ) _ T r 

= 0(e) - 0(0) - (Q[u(x; e); e] - Q[u(x; e); 0]) 

which leads by (6.7), (6.8), and (6.10) to 
(6.12) Q[u(x;e)]-Q[u(x;0)] = 0(e). 

But from the quadratic character of Q[u] and the minimum prop­
erty of u(x\ 0) with respect to this Dirichlet integral, we have 

(6.13) Q[u(x; e)] - Q[u(x; 0)] = Q[u(x) e) - u(x; 0)] = 0(e). 

Thus, u(x; e) converges to u(x\ 0) in the Q-metric and, consequently, 
in view of the assumed continuity properties of Qi[u; e], we find from 
(6.9) 

0(e) - 0(0) 
(6.14) l i m — - ^ = Qi[u(x;0);0]. 

«-•o e 

This proves the differentiability of the functional and yields an ex­
plicit variational formula. 



1954] VARIATION OF DOMAIN FUNCTIONALS 327 

It is interesting to observe the role which the actual minimum char­
acter of <j> [D ] plays in our reasoning. Terms like 

— (Q[«(*'•€) ;0 ] - Q[«(a; 0) ;<>]), 
6 

which occur in (6.4) and are easily estimated from the minimum prop­
erty, require a detailed investigation of the dependence of u(x; e) on 
e if the minimum property does not hold. 

In important cases the value u(x; e) itself can be characterized by a 
minimum problem of the above type. In this case, the above method 
leads to the derivative of u(x; e) with respect to e which, in turn, 
leads to the second derivative of $[e]. In the case of the harmonic 
Green's function, for example, such reasoning leads to the deriva­
tives of all orders of Ge(x, £) with respect to the parameter. 
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