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1. Introduction. For a long time the efforts of many mathe­
maticians have been directed toward the creation of a complete 
theory which extends the quantitative concepts of Euclidean geom­
etry to general subsets of Euclidean w-space, Eni and to mappings into 
En . The first and fundamental steps in the modern development of 
this subject were taken by Lebesgue and Carathéodory with the in­
vention of the general theory of measure. Subsequently the main 
interest has shifted naturally to the specific geometric problems 
which arise when the new concepts are applied in the extension of 
classical analytic formalisms and in the structural study of sets and 
mappings. 

Measures are functions defined on classes of point sets; areas are 
functions defined on classes of mappings. 

The first four sections of this paper are mainly expository. They 
contain the definitions of certain measures of geometric interest; a 
discussion of the rectifiability, tangent planes, densities and projec­
tions of point sets; and a description of a very general form of the 
Gauss-Green Theorem which illustrates the scope of the theory and 
its applicability to classical problems. Pivotal in this whole structure 
is the relationship between the purely metric notion of Hausdorff 
measure and the group-theoretic concepts of integral geometry. 

The remaining four sections of this paper serve to establish some 
new results concerning the area of mappings. The basic issue moti­
vating these investigations is the validity of the principle that every 
area defined by any reasonable method is naturally representable 
as an integral of a multiplicity function with respect to a measure. 
This raises a difficult problem because Lebesgue, in introducing his 
particular area which has been used very successfully by many 
workers in the field, was guided entirely by the analytic requirement 
of semi-continuity ; his definition appears to have no immediate con­
nection with the geometric measure theory which was created later 
by Carathéodory. This difficulty has now been overcome for the case 
of prime classical interest: mappings of a two-cell into three-space. 
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The principal new results are contained in the theorems 8.17, 8.15, 
and 6.9. 

2. Definitions of some ^-dimensional measures over w-space. Sup­
pose k^n are positive integers, <£* is the ^-dimensional Lebesgue 
measure over Ek, and 

a(k) = £ * ( £ * H {x\\x\ < l}) 

is the volume of the ^-dimensional unit sphere. 
Let A CEn. With each positive number r we associate the infimum 

of all numbers of the form 

00 

J2 2~ka(k) (diameter B%)h 

where 
00 

i C U Bif 

diameter Bi < r for i = 1, 2, 3, • • • . 

As r decreases toward zero, this infimum never decreases; it ap­
proaches the limit 

3e*(i4), 

the ^-dimensional Hausdorff measure of the subset A of En. 
If k = n, then 3C*=o£n and the above infimum is actually inde­

pendent of r. Carathéodory was the first to recognize the necessity 
of the double limiting process in case k<n. By attaching to each set 
Bi a constant times the &th power of its diameter, Hausdorff modified 
the earlier definition of Carathéodory, who had required Bi to be 
convex and had associated with it the supremum of the Jjo measures 
of its orthogonal projections into Eh. The measures of Carathéodory 
and Hausdorff are not identical, but their ratio is bounded [MEF l ] . 
This implies that the structure theorems for sets of finite Hausdorff 
measure, described in the following section, apply equally to sets of 
finite Carathéodory measure. However Hausdorff measure appears to 
be usually easier to work with and it has the advantage, exploited in 
§6, that its definition remains meaningful for arbitrary metric spaces. 

The simplest orthogonal projection of En onto Ek is the function 
p\ on En such that 

k 

Pn(x) = Oi, • • • , # * ) £ « £ * for x = (#i, • • • , Xn) G En. 
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Every orthogonal projection of En onto Ek is a superposition of the 
form 

k n 

pnOR, 

where R is an element of the group Gn of orthogonal transformations 
of E n . 

For each function ƒ, each set X, and each point y, let 

N(f, X, y) 

be the number (possibly oo ) of elements of the set 

XC\{x\f(x) = y). 

Now let A be an analytic subset of En. For each RÇ.Gn the integral 

x N{AfploR, y)d£ky 

indicates the size of the corresponding orthogonal projection of A, 
counting each point in Ek with its multiplicity of projection. Using 
the Haar measure <j>n over Gn for which <t>n(Gn) = 1 and the constant 

a{n){\) 
we define the integralgeometric Favard measure 

jl(A) = 0(», k)'1- f f N(pk
noR, A, y)dJbyd4>Jt 

as a kind of average projection size of A. In his note in the Comptes 
Rendus Favard attributes the idea for this definition—more pre­
cisely, a trivially equivalent definition—to a suggestion by Lebesgue. 
After that Favard never did anything to exploit this concept, whose 
fundamental importance will become clear in the next section. 

The assumption that A be an analytic set was made in order to 
assure the measurability of the integrand in the definition of J%(A). 
The measure may be extended to arbitrary subsets B of En in such a 
way that J%(B) is the infimum of J%(A) for all analytic sets A con­
taining B. 

The functions 3c£ and J% are (Carathéodory outer) measures over 
En- Every closed subset of En is both 5C$ and Jn measurable (in the 
sense of Carathéodory). Every subset of En is contained in a G& set 
of equal 3Cj; measure and also in an analytic set of equal J* measure. 
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Every 3C£ measurable subset of finite 3CÜ measure contains an Fff set 
of equal 5C* measure. Every analytic set of finite J% measure contains 
an Fff set of equal J„ measure. 

If a function g on En to {t\ — oo g/<* oo } is analytically measur­
able, which means that the g counterimage of every open subset of 
the extended real number system is an analytic subset of Eni then 

f g(x)dfn% = 0(n, kf1 f f £ g(x)d£kyd<l>nR. 

In view of the obvious additivity and convergence closure properties 
of the set of all functions g for which this formula holds it is sufficient 
to observe that the formula is trivially true in the special case in 
which g is the characteristic function of an analytic subset of En. 

3. The structure of sets whose Hausdorff measure is finite. A 
function ƒ on Ek to En is said to be Lipschitzian if and only if there 
is a number M such that 

I ƒ(*) - ƒ(*') | ^ M- | x - x' | for x G Ek and %' G Ek. 

According to Rademacher, such a function ƒ has at /j, almost every 
point x of Ek a total (Fréchet) differential which is represented by a 
matrix of k columns and n rows of partial derivatives; the square 
root of the sum of the squares of the determinants of the &-rowed 
minors of this matrix is the Jacobian Jf(x). The connection between 
these analytic concepts and the measure theory of the preceding 
section is established by the formula 

fjf(x)d£kx= f N(f,X,y)d3Cny 
J X J En 

- f N(f,X,y)i£y, 
J En 

which is valid for each Lipschitzian function on Ek to En and each 
jfjc measurable set X (see [F 1, 3]). The two integrals on the right 
are equal to the countable sums 

È,i-x£({y\N(f,x,y) = *'})+ «>.rcî({y| #(ƒ,*, y) - •}) 
t = l 

and 
Z i'7kn(b\mx,y) = i})+ • .# ({ , !# (ƒ ,* f , ) - «J). 
1=1 
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We follow the usual convention of measure theory that oo 0 = 0. In 
particular, if ƒ maps X univalently onto F, then 

f Jf(x)dJ&x = 3C»(F) = fn(Y). 
J x 

In this connection it is useful to know that every ^ measurable set X 
contains an .£* measurable set X1 such that ƒ is univalent on X' 
and such that the sets X and X1 have the same ƒ image ( [MF]) . 

This leads us to consider those sets which are almost representable 
as Lipschitzian images of subsets of Ek. More precisely we say that a 
subset A of En is Hausdorff k rectifiable if and only if there is a 
Lipschitzian function ƒ on Ek to En such that 

^n{A - range ƒ) = 0. 

Every subset of a Hausdorff k rectifiable set is Hausdorff k rectifi­
able. A countable union of Hausdorff k rectifiable sets is Hausdorff k 
rectifiable. 

Before entering into a deeper discussion of Hausdorff k rectifiable 
sets we must introduce some of the concepts which help to describe 
the local behavior of sets of finite Hausdorff measure. For aÇ^En and 
r > 0 we let 

K(a, r) = {x | | x — a \ < r] 

be the open sphere with center a and radius r. If A is a regularly 
embedded ^-dimensional manifold through a, then 3Cn[Ar^K(a, r)] 
is asymptotically equal to a(k)-rk as r approaches zero. This sug­
gests the definition, for arbitrary A QEn and aÇzEni of the upper and 
lower Hausdorff k densities 

k/A N v Wn[A n K(a, r)] 
®n(A, a) = hmsup - — ; 

r->o+ a^tyr1* 
u ^l[AC\K{ayr)] 

®n(A, a) = hm mf —— 
r->o+ a(k)rk 

If A is any set for which 3Q%(A) < <x>, then 
~k A; h 

2 ^ ®n(At a) g 1 for 5CW almost all a in A. 

If, in addition, the set A is 3C* measurable, then 
k k 

5»C4, a) = 0 for 3Cn almost all a in En — 4 . 
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There exist JCj measurable sets A for which 0<5C*(^4)<oo and 
QÎ(A, a) = 0 for all aEEn. 

Turning now to the subject of approximate tangent planes, we 
first observe that for each i ? £ G n the orthogonal projection (pn o R) 
maps the &-plane 

{x\ | x\ = | (pnoR)(x) | } 

isometrically onto Ek. The &-plane parallel to the above and through 
the point aÇ£En is 

On(R, a) = { x | | x — a | = | (pn o R)(x — a) \ }. 

By saying that the fe-plane Ol(R, a) is an approximate tangent 
plane of the set A QEn a t the point a we mean roughly that most of 
those points of A which are close to a—say in K(a, r)—lie in a suit­
ably preassigned neighborhood of 0\(R1 a) — {a}. For the latter we 
choose the sets 

k ( I I I 2 1 / 2 I k \ \ 

On(R, c, a) = {x I I x - a I < (1 + e ) | (pn o R)(x — a) \ \ 

corresponding to €>0 . A point x of En is in <>l(R, €, a) if and only if 
the distance from x to the (n — k) -plane through a and perpendicular 
to 0*(R, a) is less than e times the distance from x to 0*(R, a). 
Requiring of course that A should appreciably enter into arbitrarily 
small neighborhoods of a, we phrase the precise definition as fol­
lows: The set AC.En has a t the point aÇiEn the Hausdorff k (ap­
proximate) tangent plane 0*(i?, a) if and only if 

ig 

®n(A, a) > 0 
and 

®n[A — OnC&, €, a), a\ = 0 for every e > 0. 

Under these circumstances we shall refer to (p\ o J?) as a tangential 
projection of A at a. I t is clear that R is not uniquely determined by 
On(R, a) and serves only as a convenient parameter, nor is the 
tangential projection uniquely determined by Ol(R, a). However 
the &-plane 0\(Ry a) is usually unique in cases of interest to us, for 
if ^(A) < oo, then A has a t 3C* almost all points of En at most one 
Hausdorff k tangent plane, though it need not have any. 

Fixing e > 0, we observe that 

k[A * / D , , ,. Wk
n[Ar\K(a, r) - <>l(R, e, a)] 

r->o+ a(k)rk 
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If A is a regularly embedded jfe-dimensional manifold through a whose 
tangent plane a t a in the classical sense is 0\{R, a), then the set 
whose Hausdorff measure occurs in the numerator is vacuous when­
ever r is sufficiently small. The notion of an approximate tangent 
plane is therefore an asymptotic generalization of the corresponding 
classical concept. 

We have now filled in the background necessary for the under­
standing of the following basic theorem describing the structure of 
sets whose Hausdorff measure is finite. 

Suppose A is an 3c£ measurable set for which 

XniA) < oo, 

B is the set of all those points of A at which A has a Hausdorff k tangent 
plane, and 

C = A - B. 

Then: 
(1) B and C are 3Cjj measurable sets. 
(2) B is Hausdorff k rectifiable. 
(3) C contains no Hausdorff k rectifiable set of positive 5fCj measure. 
(4) jl{B)=X*{B). 
(5) Jn(C) —O; for <f>n almost all R in Gn the (pi o R) image of C has 
j h measure zero 
(6) ^(A) = K(B)+3<Z(C)=J*n(B)+3Cl(C)=Jk

n(A)+3<*(C). 
(7) ÏÏ(A)£9I*(A). 
(8) The following three conditions are equivalent : 

(i) Jl(A)=X*n(A). 
(ii) A is Hausdorff k rectifiable. 
(iii) A has Hausdorff k tangent planes at 3C„ almost all of its points. 

(9) The following three conditions are equivalent: 
(i) ?&i)«o. 
(ii) A contains no Hausdorff k rectifiable set of positive 3C* measure. 
(iii) A has Hausdorff k tangent planes at 5Cj almost none of its points. 
For the special case in which k = 1 and n = 2 these results are sub­

stantially due to A. S. Besicovitch, A. P. Morse, and J. F. Randolph 
([B l ] , [MR]). The extension to general dimensions was made by 
the writer ( [ F 4 ] ) . 

Intimately related to this structure theory, there has been a great 
deal of research into the subject of Hausdorff densities. I t is easy to 
prove that 

k k k 

<5n(A, a) = Qn(A, a) = 1 for 5Cn almost all a in B, 
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but the behavior of the densities on C presents a difficult problem. 
For the special case in which k = 1 it is known that 

6nC4, a) ^ 1.01Qn(i4f a) for 3Cn almost all a in C. 

This intriguing estimate was obtained by A. P. Morse and J. F. 
Randolph for w = 2 and extended by E. F. Moore to all positive in­
tegers n (See [MR], [MEF 2]). 

4. The Gauss-Green Theorem. The classical formula bearing this 
name asserts that the integral of a partial derivative of a function 
over an open subset of En equals the integral of the function itself, 
multiplied by a component of the exterior normal, over the boundary 
of the open set. Giving precise measure-theoretic interpretations to 
the intuitive concepts which enter into this statement, we are able 
to give it a completely natural and general form. 

Suppose U is a bounded open subset of En, A is the boundary of £/, 
and 3C^r\A) <oo. 

We shall integrate with respect to «£n over U and with respect to 
3Cn_1 over A. Our definition of the term "exterior normal" is as fol­
lows: Suppose a£zA and w is a unit vector, that is, w £ E n and \w\ 
= 1. For each r > 0 w e consider the solid hemispheres 

s{r) = K(a, r) C\ {x \ (x - a) • w ^ 0} , 

/(r) = K(a, r) H {x | (x - a) • w g O} 

into which the sphere K(a> r) is divided by the (w — l)-plane through 
a and perpendicular to w. The vector w points from a into s{r)y and 
— w points into t(r). By saying that w is an exterior normal of U at 
a we mean roughly that for small r the hemisphere t{r) is filled mostly 
with points of U while s(r) contains only few points of U; precisely we 
mean that 

lim = — = 1 

and 

r £n[s(r)nif] 
lim — — — a= 0. 
r->0+ ^CnU(f)J 

The set U has a t each point a at most one exterior normal, but it may 
have none. We define 

v(U, a) 
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as the exterior normal of U a t a whenever that exists, and as the zero 
vector otherwise. We also let vj( U, a) be the j t h component of the 
vector v(U, a) for j~l, 2, • • • , n. 

From our discussion of the geometric properties of the domains of 
integration we now turn to the assumptions about the function which 
is to occur in our formula. 

Suppose f is a numerically-valued f unction, continuous on U\JA, and 
absolutely continuous in the sense of Tonelli on U. 

The last part of this hypothesis means that for j = l, 2, • • • , n 
the partial derivative 

Dif(x) 

of ƒ in the direction of the jth base vector exists for «£„ almost all x\ 
that 

f | Dif(x) | A O < oo ; 

and that for «£n-i almost all y in £w-i the function 

f(yu • • • , yj-h *, yj+u • • • » yn-i) 

of one variable z is absolutely continuous in the classical sense on 
every interval I for which 

{(yu • • • , yj-i, z> yi+u • • • » 3>«-i) \z<El} CU. 

We observe that for all this to hold it would be sufficient, but not 
necessary, to assume that the first partial derivatives of ƒ are con­
tinuous and bounded on U. Under the foregoing assumptions the 
writer has proved (in [F 2, 3]) the Gauss-Green formula: 

J Djf(x)d£nx = I f(a)v3{U, a)d ttl^a for j = 1, 2, • • • , n. 
U J A 

Inasmuch as all earlier definitions of exterior normals utilized tangent 
planes of the boundary set, it is interesting to note that at 3C"""1 

almost all of those points a of A a t which U has an exterior normal 
the (w — 1)-plane 

{x\ (x — a) o v(A, a) = 0} 

is a Hausdorff n — 1 tangent plane of A a t a. The converse is false, as 
may be seen from the simple example in which n = 2 and U is an open 
disc minus a radius ; a t each point of this radius the set A has a Haus­
dorff 1 tangent plane, but U has no exterior normal. 
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The set of those points of A a t which U has no exterior normal 
contributes nothing to the integral on the right, because Vj{ U, a) = 0 
for all such points a. However this point set and, worse than that, 
the set of those points of A a t which A has no Hausdorff n — 1 tangent 
plane may very well have positive 3CÎJ"*1 measure. This situation may 
occur even in the relatively simple case in which n = 3 and A is 
homeomorphic with a two sphere. Significant in this connection is 
the fact that , while every connected set of finite 3C£ measure is 
Hausdorff 1 rectifiable, the intrinsic topological properties of a set of 
finite 3C£ measure have no bearing whatever on its rectifiability in 
case k>l. 

To our version of the Gauss-Green formula corresponds the fol­
lowing form of the Cauchy Theorem: 

If U is a bounded set of complex numbers, A is the boundary of U, 
50l(A) < oo, and if the complex-valued f unction f is continuous on U^JA 
and analytic on U, then 

f f(a)v(JJ, a)d3cla = 0. 
J A 

This reduces to the classical formula in case A is a simple closed 
rectifiable curve in the plane. 

5. Multiplicity functions and areas. Assuming that X is a locally 
compact, locally connected, separable subset of a triangulable k-dimen-
sional manifold we let 

Cn(X) 

be the set of all continuous functions on X to En. We wish to associate 
with each mapping fÇzCn(X) a non-negative number (possibly <») 
indicating the ^-dimensional extent of the point set occupied by the 
values of ƒ as well as the multiply overlapping manner in which the 
various parts of this point set may be covered by ƒ. If such an asso­
ciation has invariance properties consistent with the Euclidean 
geometry of En, and if it relates to relatively simple (differentiable) 
mappings the same numbers as do the classical integral formulae, 
then we shall refer to it as a k-dimensional area on Cn(X). No precise 
definition of this general concept of area, which would complement 
Carathéodory's axiomatization of the notion of measure, has yet 
been devised. Up to now all the work in this field has been directed 
toward the study and comparison of certain particular functions 
which belong to the still vague category of all areas. In the remainder 
of the present paper we shall continue these special investigations, 
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but we shall point out some desirable general properties of areas as 
they occur in our work. 

Most areas are defined as integrals of multiplicity functions by the 
following scheme: Suppose fi is such a function that, for fÇî.Cn{X) 
and y £ £ n , 

/*(ƒ, X, y) 

is either a non-negative integer or <x> and gives a sensible appraisal of 
the multiplicity with which the mapping ƒ assumes the value y. Sup­
pose further that ^ is a measure over En and is reasonably indicative 
of ^-dimensional Euclidean extent. Then the function which asso­
ciates 

x M(/, Xy y)<tyy 

with fÇzCn(X) is the area on Cn(X) corresponding to the multiplicity 
function fx and the measure \p. 

In §2 we have already described the elementary multiplicity func­
tion N which simply counts the points x in X for which ƒ(x) =y. Used 
in conjunction with the measure 5C* it yields the k-dimensional Haus-
dorff N area 

JE. 
N(f, X, y)d3cly, 

and with Jl the k-dimensional integralgeometric N area 

N(f, X, y)djly, ƒ 
of the mapping fÇz.Cn{X). According to §3 these areas agree with the 
classical integral formula in case X is an j(jc measurable subset of Eh 
and ƒ is a Lipschitzian mapping. For any X and any fÇzCn(X) our 
structure theorem concerning sets of finite Hausdorff measure im­
plies that 

f N(f, X, y)dx£y * f N(f, X, y)dfny 
JEn J En 

and that, in case the ^-dimensional Hausdorff area of ƒ is finite, 
equality holds if and only if the range of ƒ is a Hausdorff k rectifiable 
set. A comprehensive list of such inequalities, containing all known 
results of this type except for those derived in the following sections 
of this paper, may be found in the writer's recent note [F 6] . 
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Assuming that \[/ is such a measure over En that all closed subsets 
of En are \f/ measurable, the \p N area of any ƒ G Cn(X) may (according 
to [F l ] ) be computed as follows: Let a partition P of X be such a 
countable disjointed family of analytic subsets of X that 

U W ~ X 
WGP 

and let 

TFGP 

Then the \[/N area 

f N(f,X,yWy 

of ƒ equals the supremum of cr(^, ƒ, P ) for all partitions P of X ; it 
also equals 

Km *(*,ƒ, P t) 
1—»oo 

whenever Pi , P2, P3, • • * are such partitions of X tha t 

lim sup diameter W = 0. 

These alternate methods for the computation of the N area em­
body the general measure-theoretic principle underlying the classical 
theorem which states that the length of a continuous curve, defined 
as the supremum of the lengths of all inscribed polygons, equals the 
limit of the lengths of the terms of any sequence of inscribed poly­
gons with vertices corresponding to finer and finer subdivisions of the 
interval on which the curve is parametrically represented. In this 
case \f/ is 3Cj or Jny X is a closed interval, and only finite partitions 
of X into subintervals need be considered. The classical length of 
any curve fG.Cn(X) is found to be equal to the one-dimensional 
Hausdorff N area of ƒ and also to the one-dimensional integral-
geometric N area of ƒ. 

Among the elementary properties of the multiplicity function N 
the following three appear to have some general significance: 

(i) Localizability of N. If X'CX and 

Xr\ {x\f(x) = y} CX', 

then 
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#(ƒ, X, y) « N(f9 X', y). 

(ii) Additivity of N. If P is such a disjointed family of subsets of X 
that 

U W = X, 
TTEP 

#(ƒ, * . y) = E iV(/, w, y). 

WGP 

(iii) Superposition formula for N. If 
Yi = {y | JV(/f X, y) ê i) for i = 1, 2, 3, • • • , 

N(gof,X,z) = ]£#(* , F**)-

Analogous, somewhat weaker properties are shared by all those 
functions to which we vaguely refer in this paper as "multiplicity 
functions," and will certainly play a role in any future precise defini­
tion of that term. 

The superposition formula for N may be used to show that the 
^-dimensional integralgeometric iVarea of/£Cn(X) equals 

0(», à)"1 ' f f N{phn oRof,X, z)dJ&d4>nR, 
J GnJEk 

a kind of average over Gn of the areas of the orthogonal projections 
pn o R o f of ƒ. In case X is ^-dimensional and k < n these projections, 
which map X into JE*, are much easier to study than the mapping ƒ 
of X into JEn. In this respect the integralgeometric area is simpler 
than the Hausdorff area, which cannot be represented as an average 
of this type. 

There are several natural multiplicity functions other than N. 
Among these the function 5 is connected with the concept of stabil­
ity. We recall that y is said to be a stable value of ƒ if and only if 
y is in the range of every mapping sufficiently close to ƒ. The under­
lying topology on Cn(X) is based on the neighborhoods 

Cn{X) C\{g\\ g(x) - ƒ(*) I < e for x G X} 

of ƒ corresponding to e>0. Convergence in this topology is uniform 
on X. Introducing (as in [R 3]) the stable multiplicity 
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S(f, X, y) - lim inf N(g, X, y), 

we note that y is a stable value of ƒ if and only if S(f, X, y) >0. We 
also observe that 

lim sup N(g, X, y) = <*> 

whenever X is dense in itself and y is in the closure of the range of 
ƒ. Since X is at most ^-dimensional, S(f, X, y)~0 in case k<n. 
Therefore the function S is directly useful only in case k = n, where it 
gives rise to the jf^kS area on C*(X). However the alternate formula 
for the integralgeometric N area, which was discussed in the pre­
ceding paragraph, suggests the indirect definition of the k-dimen-
sional integralgeometric stable area on CW(X) associating 

0(», k)-1 f f S(ph
noRof, X, z)dJlkzd<t>nR 

J On J Ek 

with/GCn(X) for k^n. In case X is a subset of Ek whose boundary 
has o£fc measure zero and ƒ is a Lipschitzian mapping this stable area 
of ƒ agrees (according to [F 3]) with the classical Jacobian integral 
formula, because each projection pi o R o ƒ is a Lipschitzian mapping 
in Ck(X) and because 

5(A, Xy z) = N(h, X, z) iovJ^k almost all z in Ek 

whenever A is a Lipschitzian mapping in Ck(X). Furthermore we have 

S(A, X, z) S N(h, X, z) for h G C*(X) and z G JE», 

whence we conclude that the ^-dimensional integralgeometric stable 
area of every /GCW(X) is less than or equal to the ^-dimensional 
integralgeometric N area of ƒ. 

From the point of view of approximation theory the function N, 
which accounts only for the relatively accidental behavior of an in­
dividual mapping, is less appropriate than the stable multiplicity 
function S. Indeed 5(/, X, y) is computable by the Cech cohomology 
theory which approximates X and ƒ by complexes and simplicial 
mappings [F7] , 

For/GCAJ(X), yÇzEk, and r > 0 the components of the open set 

Xr\{x\\f(x)-y\<r} 

are connected open sets. We shall refer to them as canonical regions of 
(ƒ, X, y, r). Furthermore we shall call F a canonical family of 
(ƒ, X, yy e) if and only if each element of F is a canonical region of 
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(ƒ, X, y, r) for some r^ef F is disjointed, F covers the closed set 

Xn {x\f(x) = y], 

and every point of X has a neighborhood which meets only finitely 
many elements of F. 

IffÇzCk(X), yÇzEky and €>0, then there exists a canonical family F 
of (J, X, y, «). 

To prove this we let 

A - {x\f(x) = y}, 

G(r) = the set of all canonical regions of (ƒ, X, yy r) 

whenever r > 0 , choose compact subsets 

0 = S o C 5 i C B i C ' - « 

of X for which 
00 

X = U Interior Bif 
t=i 

and inductively define the sequences 

Po* îi 2̂i • • • ; #o, £Ti, #2 , • • • ; Uo, Uu U2, • • • 

in such a way that 

r0 = c, #0 = 0, £/0 = 0 

and 

n = inf ({n-„x} \ J { I ƒ(*) - y I I * G A - i - tfi-i}), 

#. = G(n) n {7| 7n il n A cc ov-i}, 
tf, = 17<-I U U V 

for i = l, 2, 3, • • • . We shall prove that 
00 

F = U Hi 

is a canonical family of (ƒ, X, y, e). 
First we verify by induction that 

0 < n-,S e and (4 H Bi) C I7< 

for every non-negative integer i. The statement holds if i = 0. If it 
holds for i = 7 — 1, then 

(4 O 5 ^ 0 C f//-i, ( H M - ^ - 1 ) H il = 0, 
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I ƒ(*) ~ y I > 0 for x G Bj„i — J7,-_i, 

i^j_i —• i!7/_i is compact, 0 < r/ ^ r,-_i, 

i C {*| |/(*) - y | < ry} C U V, 

(A Pi BJ) - Z7,-_i C U F, {AC\ Bj) C 17* 

whence the statement holds for i =j. 
We infer that each element of F is a canonical region of (ƒ, X, y, r,-) 

for some rt- g e, and that JP covers ^4. 
Since G(r) is disjointed for r > 0 , i?* is disjointed for i = 1, 2, 3, • • • . 

If i? were not disjointed, there would exist i<j, V(£Hif WÇLH, 

with vnw?*0; hence r,£rit VEG^n), WGGfo), WCVCUiCU^u 
W&Hj. I t follows that F is disjointed. 

For i=l, 2, 3, • • • the set Hi is a disjointed family of open sets 
each of which meets the compact set J3*; hence Hi is finite. In view of 
this and of the fact that every point of X is interior to some set Bj, 
we may complete the proof by checking that 

FC\{v\vr\Bi*Q}C\} Hiîorj = 1, 2, 3, • • • . 
i=i 

To do this suppose i<j, V£.Hjf x G Vr\Bit Then 

xeVGGir,), \f(x) -y\ < rif 

Vr\Ui = 0, x<EBi- Ui} | ƒ(*) - y | è r<+i, 

whence r<+i<ry, contrary to the fact that i+1 ^j and ?\-+i^y-
The proof is complete. 
A canonical region V of (ƒ, X, y, r) is said to be inessential if and 

only if there exists a mapping 

v G C*(Closure F) 

such tha t 

v(x) = ƒ(x) for x G Boundary F, 

I v(%) — y | = f for # G F. 

Otherwise F is essential; in this case there exists a mapping 

v G C*(Closure F) 

such that 

v(x) = f{x) for x G Boundary F, 
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I K%) — y | = f f or # G F, 

tf (*, F, y) = 1. 

Corresponding to each canonical family F of (ƒ, X, y, e) we construct 
a function g by choosing for each region VÇLF a mapping z>£C& 
(Closure F) as above, letting g(x)=v(x) for # G F , and letting 

g(x) = ƒ(») for x G X - U V. 
VE-F 

The locally finite character of F assures us that gÇîCk(X). Further­
more 

I # 0 ) - ƒ(*) I â 2e for * G X, 

N(Zi X> y) — ^ e number of essential regions in F. 

With this machinery at hand we proceed to the proof of the fol­
lowing proposition: 

IffeCk(X)yyEEkland 

s(r) = the number of essential canonical regions of (ƒ, X, y> r) 

whenever r > 0 , then 

lim s(r) = S(f, X, y). 
r->0+ 

The above limit exists because r > rf > 0 implies that every essential 
canonical region of (ƒ, X, y, r) contains an essential canonical region 
of (ƒ, X, yt r')> whence s(r) t£s(r'). 

UgGCh(X),r>Otand 

I g(%) "" ƒ(#) | < rîox x Ci X, 

then N(g, F, y) ^ 1 for every essential canonical region F of (ƒ, X} y,r), 
because ƒ and g define homotopic mappings of Boundary V into 
Ek— {y} ; it follows that iV(g, X, r) g£s(r). Consequently 

S(f, X, y) ^ Km *(r). 

In proving the opposite inequality we may assume that there exist 
a positive number p and an integer i such that 

s(r) = i for 0 < r ^ p. 

Suppose € > 0 and let F be a canonical family of (ƒ, -X", y, e). If 
Vu F2, • • • , Fy are essential regions in F, let ri, r2, • • • , rj and r be 
such numbers that 
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0 < r ^ p, r ^L rti 

and 

Vt is a canonical region of (ƒ, X, yy r%) for / = 1, 2, • • • , j . 

Then each F* contains an essential canonical region of (ƒ, X, y, r), 
whence j^i. Constructing g corresponding to F as previously indi­
cated, we find that gG.Ck(X)f 

I g(x) ~ ƒ(*) | ^ 2e for x G X, 

#(g, *> V) ^ i. 

I t follows that £(ƒ, X, y) £*. 
The proposition whose proof we have just completed reduces the 

computation of the stable multiplicity to the counting of essential 
canonical regions. The Hopf extension theorem [D] of combinatorial 
topology provides an apt criterion to decide whether a canonical 
region V of (f,X, y, r) is essential. Since ƒ maps Closure V into Ek 
and Boundary F into EkC\ {z\ \ zt—y\ ^r}, ƒ induces a homomorphism 

ƒ*: H\Ek, Ek H {z | | z - y | è r}) -» #*(Closure 7, Boundary F) 

of the ^-dimensional Cech cohomology groups with integer coefficients 
and based on locally finite coverings. A necessary and sufficient 
condition for V to be inessential is t h a t / * be a trivial homomorphism 
(whose range has only one element). 

The preceding condition is certainly satisfied whenever Hk 

(Closure V, Boundary V) is a trivial group (with only one element). 
This is actually the case unless F is a ^-dimensional manifold and 
Closure F is compact. Consequently: 

If fÇzCk{X) and r > 0 , then every essential canonical region of 
(ƒ, X, y, r) is a k-dimensional manifold whose closure is compact. 

IffÇzCk(X), then S(f9 X, y) is the supremum of the set of all integers 
i such that there are nonvacuous k-dimensional manifolds Fi, F2, • • • , 
Vi whose closures are disjoint compact subsets of X and for which y is 
a stable value of each of the mappings (/ | Ft), (/| F2), • • • , (j\ Vi). 

From this alternate characterization of the multiplicity function S 
we infer that though 5 was originally defined in terms of the strong 
"uniform" topology on Ck(X), it may equally well be defined in terms 
of the weaker "compact-open" topology on Ck(X) based on the 
neighborhoods 

Ck(X) n{g\\ g{x) - f{x) | < € for x G A} 

of ƒ corresponding to each € > 0 and each compact subset A of X. 
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Convergence in this topology is uniform on every compact subset of 
X. 

Whenever ƒ G Ck(X) and X' is a locally compact, locally connected 
subset of X, then <j\X')e.Ck(X') and we agree that 

S(/, X', y) = S(f | X', X', y) for y G £*. 

We are now ready to state five basic properties of S: 
(i) Localizability of S: /ƒ/GCjb(X), X' is a locally compact, locally 

connected subset of X, y£:Ek, and 

X H { x | ƒ(*) = y} C Interior X', 

S(f, X, y) = £(ƒ, X', y). 

(ii) Additivity of S: If / G C A , ( X ) , yG-Efc, awd P w swcfe a disjointed 
family of open subsets of X that 

V W = X, 
TFEP 

S(f, X, y) = E £(ƒ, PF, y). 

(iii) Superposition formula for S: If ƒ G Gb(X), F i s a locally compact, 
locally connected subset of £&, range ƒ C F, ^ G C A ; ( F ) , SG-EA?, #wd 

F< = {y | 5(/ f X, y) ^ f} /or i = 1, 2, 3, • • • , 

then 

S(gof,X,y) S ES(g , F,,s). 

Sufficient f or equality are the conditions that X be embedded in an orient-
able k-dimensional manifold and that the set 

[y\g(y) = z] 

be totally disconnected. 
(iv) Compact origin of S: If fGCn(X)f yGEki and F is the set of all 

compact, locally connected subsets of Xt then 

S(f, X, y) = sup S(f, X', y). 

(v) Lower semi-continuity of S: S(f, X, y) is lower semi-continuous 
with respect to (ƒ, y) on the cartesian product Ck(X) XEk with the i(com-
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pact-open" topology on Ch{X) and the usual topology on Ek. 
The sets Ft- in (iii) are open by virtue of (v). The strict inequality 

may hold in the conclusion of (iii) even if k = 1 and X and Y are 
closed intervals. 

Combining (v) with Fatou's lemma which states that the lower 
limit of the integrals of non-negative measurable functions is greater 
than or equal to the integral of the lower limit of these functions, we 
find that the ^-dimensional integralgeometric stable area on Cn(X) is 
lower semi-continuous with respect to the "compact-open" topology on 
Cn(X). 

Now suppose that the space X admits finite triangulations. A 
mapping gÇzCn(X) is polyhedral if and only if X has such a finite 
triangulation T that g maps each simplex of T baricentrically onto 
some rectilinear simplex of En, The ^-dimensional area of gy defined 
according to any one of the methods which we have described, equals 

where 7& is the set of all ^-dimensional simplices of T. The Hausdorff 
measures occurring in this finite sum are computable in elementary 
fashion by determinants. 

The set P of all polyhedral mappings in Cn(X) is dense in Cn(X). 
For any mapping f^Cn(X) we have 

k k 

S{pn o R o ƒ, X, z) = lim inf N(pn o R o g, X, z) 

whenever RÇzGn and zÇiEk) hence the fe-dimensional integralgeo­
metric stable area of ƒ equals 

P(n, k)~l f f lim inf N(p* o R o g, Z , z)d£kzd<t>nR. 

True to the tradition of analysis we wonder what happens if we 
put the "lim inf" ahead of both integral signs. In this way we get 
the function Lh on Cn(X) such that 

Lk{j) = lim inf (the ^-dimensional area of g) 
ff-*f,oGp 

for any fÇzCn(X). The function Lh is the k-dimensional Lebesgue area 
on Cn(X). We note that, if X is fe-dimensional, the corresponding 
upper limit is infinite for all fÇ:Cn(X). 

Another way of thinking of the Lebesgue area is the following: The 
fe-dimensional area is lower semi-continuous on the dense subset P 
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of Cn(X), because it may be obtained by confining the lower semi-
continuous fe-dimensional integralgeometric stable area on Cn(X) to 
P. Hence the fe-dimensional area on P can be extended in infinitely 
many ways to a lower semi-continuous function on Cn(X). The nu­
merically largest such extension is the ^-dimensional Lebesgue area 
on Cn(X). 

For any mapping fÇzCn{X) the proposition 

Lk(f) < oo 

has far-reaching analytic and geometric consequences. It implies that 
ƒ can be uniformly approximated by polyhedral mappings whose 
areas tend to the Lebesgue area of ƒ and that many properties, such 
as being quasiconformal, which may be possessed by these polyhedral 
mappings are then inherited by ƒ. For these reasons the Lebesgue 
area has been used successfully ([R l ] , [DJ], [MCS]) in solving 
Plateau's problem: to inscribe a surface of least 2-dimensional area 
in a given simple closed curve in £3. It is true that the solution is 
necessarily a saddle surface for which all the definitions of area de­
scribed here agree with each other, so that the answer to the problem 
of Plateau is really independent of the particular definition of area 
used in stating it precisely. However the Lebesgue area is a powerful 
tool in proving the existence of solutions of this and other problems 
in the calculus of variations. 

Inasmuch as the ^-dimensional integralgeometric stable area is 
less than or equal to Lk(f) for all f&Cn(X)f it is natural to wonder 
under what conditions on k, n} and X these two areas of ƒ are actually 
equal for all fÇzCn(X). It is known that if X is a ^-dimensional cell or 
sphere, then the equality holds in case l—k^n and in case 2 = k^n 
= 3, but fails in case 3 £ k £ n ([R 5], [F 3, 6]). 

We now recall the fundamental principle with which we started 
our whole discussion of areas: Most areas can be defined as integrals 
of multiplicity functions. Indeed we constructed the Hausdorff iVarea 
and the integralgeometric N area according to this scheme, but we 
varied it somewhat in introducing the integralgeometric stable area, 
and abandoned it completely in defining the Lebesgue area. This 
raises the question: Can the Lebesgue area be represented as an integral 
of a multiplicity function? Our present state of knowledge does not 
allow a complete answer to this question, but several special cases 
have been studied thoroughly and in each of these cases the answer 
is affirmative. 

For k = 1 the Lebesgue area equals the Hausdorff N area. 
For k = n the problem was solved in [F 6], though with the unneces-
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sary restriction that the manifold in which X is embedded be orient-
able, by the discovery of such a new multiplicity function M that 
the Lebesgue area equals the Hausdorff M area. We shall presently 
describe M, without the assumption of orientability. 

In the later parts of this paper we shall answer the question for 
the case in which k = 2, n = 3, and X is a 2-cell. 

Our characterization of the stable multiplicity 5 in terms of the 
Cech cohomology theory suggests the following definition of the new 
function M: Suppose X is a locally compact, locally connected, 
separable subset of a ^-dimensional manifold (not necessarily ad­
mitting finite triangulations), fCzCk(X), and yÇzEk. For r>0 and 
each canonical region V of (ƒ, X, y, r) we consider the induced homo-
morphism 

ƒ*: Hk(Ek, Ehr\{z\ \z-y\^r})-->Hk (Closure V, Boundary V) 

of the ^-dimensional Cech cohomology group with integer coefficients 
and based on locally finite coverings. The first group is infinite 
cyclic. According to the three possible isomorphism types of the 
second group we define the non-negative integer 

D{f> r, V) 

in three alternate steps: 
(i) If V is an orientable ̂ -dimensional manifold whose closure is 

compact, then the second group is infinite cyclic, ƒ* maps a generator 
of the first group onto an integral multiple of a generator of the 
second group, and D(f, r, V) is the absolute value of the multiplier. 

(ii) If F is a nonorientable fe-dimensional manifold whose closure 
is compact, the second group is cyclic of order two and £>(ƒ, r, V) 
equals 0 or 1 depending on whether ƒ* is trivial or non trivial. 

(iii) Otherwise the second group is trivial and D(f, r, V)=0. 
Letting F(r) be the set of all canonical regions of (ƒ, X, y, r) whenever 
r>0 , we see that 

Z D(f,r,V) 

does not decrease with r. The limit, as r—>0+, of this sum is the 
multiplicity 

M(f, X, y). 

Proceeding as in [F 6] we find that the function M is connected 
with the Lebesgue area by the following theorem: 

If X admits finite triangulations and fÇzCk(X), then 
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Lk(f) = f M(f, X, y)d&y. 

The triangulation hypothesis can be removed by a suitable natural 
extension of the concept of Lebesgue area (see §6). 

The functions S and M are related by the inequality 

£(ƒ, X, y) S M{f, X, y) for ƒ G C*(X), y G £*, 

which can be strict for a set of points y with positive <£& measure. 
However these two multiplicities vanish simultaneously and are 
simultaneously infinite. Furthermore the five listed basic properties 
(localizability, additivity, superposition formula, compact origin, 
lower semi-continuity) of S hold also for M. 

Returning to the general case in which k^n we conclude this 
section by discussing two properties of L& on Cn(X) which will be of 
later use: 

(1) If X is finitely triangulable, /GCn(X) , and G is the set of all 
components of X, then 

(2) If X is finitely triangulable, /GCW(X), and Z is a finitely tri-
angulable subset of X, then 

Lh(f) *Lh(f\Z). 

The first of these two propositions is obvious, but the second seems 
worthy of further discussion. 

Suppose €>0 and g€zCn(X) is a polyhedral mapping, with a cor­
responding finite triangulation T of X, such that 

I &(%) — f{%) I < e for a; G X, 

Lk(g) g Ik{f) + e. 

Letting p be any distance function metrizing the compact space X, 
we next choose ö > 0 so that 

I g(%) "~ g(%') I < ^ whenever p(x, x') < 25. 

From T we obtain by successive barycentric subdivisions a finite 
triangulation Tf of X such that the star of each vertex of T' has a 
diameter less than ô. Then the mapping g is polyhedral with respect 
to T'. Let P be the set of all k simplices of T' and let 

Q = pr\ {s\sCZ}. 
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We next choose a sufficiently fine finite triangulation U of Z and 
a function q on Q to the set of all k simplices of U such that 

q(s) C s for s G (?. 

Applying the modification procedure of [F 6] to the identity map of 
Z into X we obtain a map uoiZ into X with the following properties: 

u maps #(Y) barycentrally onto s f or s G ö» 
wfc — <zM] C Boundary s for s G Q, 

«(5 H Z ) C Boundary s îor s (~ P — Q* 

I t follows that 

P [#(#), x] < ô for x G Z. 

From Z7 and u we obtain by successive barycentric subdivisions 
and simplicial approximation a finite triangulation U' of Z and a 
map w' of Z into X such that : 

u' is simplicial with respect to U' and T', 

p[u'(x), «(#)] < S for x G Z, 

«' | q(s) = w | g(s) for s G Q, 

w maps Z — U g(s) into the * — 1 skeleton of T". 
«EQ 

We conclude that the mapping (g 0 u')ÇzCn(Z) is polyhedral with 

P [**'(*), x] < 25, J ( go *')(*) - «(*) I < €» 

I (g o «0* ~ (ƒ I £)(*) I < 2€ for * G £ 

and that 

£*(*o«') = Z aeîkW] ^ Lk{g) s £*(ƒ) + 6. 
«GQ 

This concludes the proof of the Proposition (2). 

6. Integration over the middle space. The results of the preceding 
section suggest that among all the open subsets of X the canonical 
regions associated with a mapping fÇzCn(X) are most important in 
computing those multiplicities of ƒ which are connected with the 
Lebesgue area of/. For xÇ£X and r > 0 we accordingly consider the 
neighborhood 

Af(x, r) 

of x, which is defined as the canonical region U of (ƒ, Xy f(x), r) 
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such that # £ £ / . 
These neighborhoods do not always form a basis for the topology 

of X, for it may happen that 

A/0, r) = Af(x'r) for all r > 0 

even though x and x' are distinct points of X. Therefore we consider 
the equivalence relation 

(XXX)C\{ (xt %') | Af(x, r) = Af(x', r) for all r > 0} 

and the corresponding partition 

of X into equivalence classes, called the middle space of f. Each x£X 
is an element of the equivalence class 

*%(*) = fi A/(a, r) G ftf/. 
r>0 

The function w/ has domain X and range 2tf/. 
Assuming that X is connected we metrize the setfM/ (as in [B 2]) 

by means of the distance function d/ as follows: If A Ç-Mf and B£!M/, 
then 

df(A, B) = inf diameter f(W) 
WEF 

where F is the set of all those compact connected subsets of X which 
meet both A and B. 

The connectedness of X is essential only in proving that d/(A, B) 
< oo for all A, BÇzMf. If we wanted to drop the assumption that X 
is connected, we could replace df(A, B) by df(A, B)/[l+d/(At B)] 
in case d/(A, B) < oo and by 1 in case df(A, B) = oo. All subsequent 
results would remain substantially unchanged. 

The metric df induces such a topology on ?rtf that the function m/ 
is continuous, the m/ counterimage of every connected open subset 
of Mf is a connected subset of X, and the space fftf/ is locally con­
nected. 

If A E?tf} and r > 0 , then A/(#, r) is the same for all xE.A. It will be 
denoted by 

A/G4, r). 

The elements of ffrf/ are closed subsets of X but need be neither 
compact nor connected. If A G^f/, then A is a compact subset of 
X if and only if the sets A/(A, r) have compact closures for all suffi-
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ciently small positive numbers r. Every compact element of Mf is 
connected. The set of all compact elements of VYCf is an open locally 
compact subset of SfrC/. The whole space Mf need not be locally com­
pact. 

If X is compact, then the elements of Mf are the maximal continua 
of constancy of ƒ and the mapping mf is monotone. However, if X 
is not compact, then <Mf and m/ need not have these properties. 

In verifying these properties of fW/, m/, and df it is helpful to note 
that 

{A | df[A, mf(x)] <r} C mf[Af(x} r)] C {A \ df[A, mf(x)] < 2r}, 

{z\ Mf(z) G Wf [Af(x, r)]} = A/(%, r) for x G X, r > 0. 

Since/ is constant on each equivalence class in 5W/, there is a unique 
function // on Vît/ to En such that 

ƒ = If o m/. 

If is continuous; in fact it satisfies the Lipschitz condition 

| lf(A) - lf{B) | ^ d/(A, B) for A, B G Mf. 

If Y is any subset of En and Z is any component of the // counter-
image of F, then the diameter of Z is not greater than the diameter 
of Y. I t follows that the If counterimage of each point of En is totally 
disconnected, so that // is a light mapping. 

Recalling the manner in which 3C* was defined in terms of the 
metric of En we analogously define the k-ditnensional Hausdorff 
measure 

Ek
f 

over Mf in terms of the metric df. The Lipschitz condition satisfied 
by If implies that 

H/(Q) à 3&[lf(Q)] whenever Q C 2tf/. 

It follows that 

f g(A)dHk
fA è f E g(A)d3Cny 

J Mf J En 2/(A)=i/ 

for every non-negative analytically measurable function g on Vît/. 
To prove this we observe that the set of all those non-negative 

analytically measurable functions g for which the above inequality 
holds is closed to addition, to multiplication by positive numbers, 
and to monotone convergence. Hence it is sufficient to prove that 
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this set contains all characteristic functions of analytic subsets of 
Mj. However, if g is the characteristic function of the analytic set 
QCMf, then the inequality reduces to the formula 

Bf(Q) ^ f Wf, Q> y)dwHy 
J En 

which can be proved by the method of [F 1, 4.4]. 
If QCMf and H$(Q) < <x>, then 

Hk
f(Qr\mtef(A,r)]) ^ 1 

2~h S hm sup ^ 1 
r->o+ a(k)rk 

for Hf almost all A in Q. If, in addition, the set Q is H* measurable, 
then 

lim — = 0 
r~*o+ a{k)rk 

for H) almost all A in Mf-Q. 
These density properties of Hf can be proved just like the cor­

responding properties of 3C* established in [F 4] . 
An arbitrary subset V of X may fail to be finitely triangulable and 

the ^-dimensional Lebesgue area of the mapping ƒ | V may not be 
well defined. We therefore define the substitute 

X*(/, V) 

as the supremum of £&(ƒ] W) for all those subsets W of V which 
possess finite triangulations. I t is clear that 

Xjb(/, V) = Lk(f | V) for every finitely triangulable V C. X, 
00 

X*(/, F ) ^ X X*(/, Vi) whenever Vh F2, F3, • • • are disjoint subsets 

of V C X. 

If AÇMf and r > 0 , then 

and it is natural to compare \k[f, à/(A, r)] with a(k)rh
y the Jjo meas­

ure of any orthogonal projection of K[l/(A), r] into JE*. This leads 
us to consider the upper and lower limits 

£*(ƒ, A) = lim sup —— ; 
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L*k(J, A) = hm inf —— , 

which we think of as the upper and lower densities of the fe-dimen-
sional Lebesgue area of ƒ a t A. Using integration with respect to 
H* we shall establish formulae which allow us to regard these densi­
ties as derivatives of the Lebesgue area. Furthermore the densities 
are related to multiplicity functions connected with the Lebesgue 
area. 

We note that XA, [ƒ, Af (A, r) ] is lower semi-continuous with respect 
to {A, r) on the cartesian product space Mfx{r\r>0}. I t follows 
that £*(ƒ, A) and •£*&(ƒ, A) are analytically measurable with respect 
to A on Mf. 

LEMMA 6.1. Iff&Cn(X), V is an open subset of Mfi WQV, / > 0 , 
and 

L*k(f,A) >t for A e W, 

then 

ML {*!**/(*) e v}) ^ t-Hk
f{w). 

PROOF. We may assume that 

**(ƒ, {*!*»ƒ(*) &V}) < co. 

Let e > 0 . Defining 

u(A, r) = Closure ntf[Af(A, r)] for A £ %/ and r > 0, 

F = {«(;!, r) I A G M/, 0 < r < e/10, u(A, r) C V and 

\k[f,AM,r)] >la(k)r*}f 

Z = {A\ df(A, B) S 2 diamZ for some B E. Z} forZ C M/> 

we note that F covers W in the sense of Vitali and apply a covering 
theorem of A. P. Morse [M, 3.10] to obtain such a disjointed sub­
family G of F that 

W C U Z U U Z 

whenever Ü C G and G — H is finite. For each Z £ G we choose Az and 
rz so that 

Z = « ( 4 * r*), 4 * G 5W>, 0 < rz < c/10, 
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and observe that 

diameter Z â 2rz < e, diameter Z as 5 diameter Z S lOrz < €. 

If Z and Z' are distinct elements of G, then Af(Az, rz) and A/(Az', rz>) 
are disjoint non vacuous open subsets of Z . It follows that G is 
countable. 

If HCG and G~H is finite, then 

G\J {z\zen} 
is a countable covering of W by sets whose diameter is less than e and 

Z) 2rha(k) (diameter Z)h + ]£ 2rha(k) (diameter Z)k 

Z G Ö zE# 

^ r ! ( l X*[/, A, (4*, # * ) ] + £ X*[/, A, (4*, r^)]V 
\zE<? zE# / 

Inasmuch as 

Z \*[/, A,, (^z, fs)] ^ X*(/, {*| »/(*) G F}), 
#E<? 

we can choose üT so that 

£ X*[/,A,(^,^)] 
zGff 

is arbitrarily small. Then the last member of our string of inequalities 
exceeds 

r'ML {x\mf(x) ev}) 
by arbitrarily little. 

Letting e approach 0 we conclude that 

Hk
f(W) £f\k(f, {x\m(x)eV}). 

THEOREM 6.2. If fÇzCn(X) and V is an open subset of Mf, then 

ML {* | mf{x) G V}) à f L*k(f, A)dBh,A. 
Jy 

PROOF. We may assume that 

X*(/, {x\mf(x)ev}) < oo. 

Let ! < / < oo. For each integer i we define 
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ff< = F O {il | *'<£?(ƒ, il) St*1}, 

infer from the preceding lemma that 

Hf(Ui) £ r\k[f, {x\mf(x) G V}] < oo, 

and choose a closed subset W% of Vi such that 

Hf(Ui) =g tHk
f(Wi). 

Since the sets Wi axe disjoint closed subsets of V, we can choose 
disjoint open subsets Vi of V such that WiC Vi for every positive 
integer i. 

Applying the preceding lemma again, we conclude that 

f ZÎ(/, A)dHk
fA = £ f i î ( / , A)dHfA 

Jv i=-oo J Ui 

i=—cQ i=—oo 

^^ £ Mf, {x\mf(x)GV{}) 
i=—oo 

â/%(/, {x\t»Ax)ev}) 
and let t approach 1 to complete the proof. 

The preceding theorem is complemented by the inequality 

f L*k(f9 A)dHk
fA è f Z UU, A)dWny 

J V J En AGvtlf{A)=v 

which is valid whenever ƒ G Cn(X) and V is an analytic subset of Mf. 
It is natural to ask: 
Does equality hold in these inequalities? 
Is Lt(f, A) = £**(ƒ, -4) for H} almost all A in ?H>? 

No counterexamples are known. Moreover we shall prove the affirma­
tive answers for some special cases. The problem is trivial for k = 1 
Sn. The case in which &=w, the case in which 5 is a finitely con­
nected subset of £2 and n^ 2, and in particular the case in which X 
is a 2-cell and w = 3 will be discussed in detail. Complete answers will 
be obtained in the first and last of these three cases. In general the 
solution of these problems seems to depend on the answer to the 
following question: 

What geometric properties of a point A G5W/ and which topological 
and metric invariants of the mappings ƒ | A/ {a, r), for r > 0, are significant 
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for the densities £*(ƒ, A) and L*k(f, A)l 
One such property of A is that of being i-fold essential in dimen­

sion k, which we shall define later in this section. In some special 
cases the densities can be completely described in terms of this 
property. However the geometry underlying the behavior of the 
densities is not yet fully understood in the general case. 

In the remainder of this section we compile the fragmentary re­
sults known to us for the general case in which i ^ w a s well as the 
complete results for the case in which k = n. The case in which X is a 
finitely connected compact subset of £2 is taken up in the later sec­
tions. 

THEOREM 6.3. If fÇ.Cn{X)t V is an open subset of 9tf/, 

Mf {x\mf(x) £ F } ) = f LÎ(/, A)dHk
fA < 00, 

J y 
and V' is an open subset of V, then 

X*(/, {x\mf(x) É T } ) - f L*k(fyA)dHk
fA-

PROOF. Otherwise there is a finitely triangulable set W such that 

W C \x\mf{x) G V'},Lk(f\ W)> f L*k(f, A)dHk
fA-

Then W and m/(W) are compact, V-nif(W) is open, W and 
{x\mf(x)GV—Mf(W)} are disjoint subsets of {#|w/(x)£F}, and 
mf(W)CV'. It follows that 

**(ƒ. {*!**(*) e v)) ^ ik(f I w) + \k(f, {x\mf(x) ev- » , (RO}) 

> f LÏ(/f A)dBfA + f UU* A)dHfA 

§; f LÎ(/, A)dHk
fA = X*(/f {*| »/(*) G F}), 

which is false. 

LEMMA 6.4. IffÇzCk(X) and U is an open subset of X% then 

Mf, u) = f M(f, u, y)d&y. 
J Ek 

PROOF. If W is any finitely triangulable subset of U, then 
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Lk(f\W)= f M(f,W,y)dJby, 
J Eu rEk 

Jf (ƒ, W, y) è M(f, U, y) for y G Ek. 

It follows that 

X*(/, U) S f M(f, U, y)dJ&y. 
J Ek 

On the other hand U has finitely triangulable subsets WidWi 
CWzC • • • with the property that each point of U which has a k-
cell neighborhood in U is an interior point of Wi for some positive 
integer i. We infer that 

M(f, Wif y) S MU, Wi+1, y) for y e Ek and i = 1, 2, 3, • • • , 

M(f, U, y) = lim M(ƒ, Wi, y) for y G £*, 

f If (ƒ, £/, y)<*<> = lim f M(f, Wi, y)dJ^y 

= limL»(/| W<) ^\k(f,U). 

THEOREM 6.5. IffE.Cn(X), V is an open subset of 5W/, 

**(ƒ, {* I »*(*) G F}) = f lZ(J, A)dHfA < », 

P = F H {4 [£»(ƒ, 4) >0} , 2?<EGn, 

Z = {z|S(^o2?o/, î ï | « / W e F ) , ! ) >0} , 

£fte» 

jCk[Z-(pk
noRolf)(P)] = 0. 

PROOF. Otherwise there exist a closed set F and open sets £/0£/2 

Z)UzZ> ' ' • contained in Efc such that 

£fc(/0 > 0 and n Ui = FQZ- (plo Rolf)(P). 

Defining 

F' = Vr\ {A\(ploRolf)(A)eF}i 

U't** Vn {A\ (PnORolf)(A) G Ui] for i= 1, 2, 3, • • • , 

we infer that 
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VDU'iDUlDU'zD--- and fl Ui = F' C V - P, 
1=1 

whence 

lim f /£(ƒ, il)c/J3/il = f /£(ƒ, i4)dfl?il - 0 

and we choose a positive integer i for which 

r?7l 

However 

Ç Û{f,A)dHk,A <&(F). 

£k(F) H f S(ph
noRof,{x\ »,(*) G V}, z)d£kz 

S f M(pknoRof,{x\mf(x)ev},z)djOfi 
J Ui 

= I M(pnoRof, {x\ mf(x) £ Ui}, z)d£kz 

= I M(pnoRof, {x\ mf(x) G Ul), z)dj^z 
J Ek 

-MploRof, {x\mf(x)e U'<}) £X*(/, {x\mf(x)e U'<}) 

= C f L*k(f, A)dHk
fA-

THEOREM 6.6. If /GCW(X), F w aw ö̂ ew subset of 9tf/, 

M f {x\mf(x) G F ) ) = f LÎ(/, i4)rf£T*il < » , 

awd RGGn, then 

S(pk
noRof, {x\mf(x) G V},z) 

rg N(pk
noRolf,Vr\ {A\l!t(f,A) >Q\,z) 

for ,/^jc almost all z in E&. 

PROOF. We choose a countable basis B for the topology of E*, 
define 

Fu = {PT| TF is a component of V Pi {4 | {plo Rolf){A) G ^}} 
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for each UÇzB and let 

Zw= {z\S(pk
noRoft {x\mf(x) G W},z) > 0} 

whenever WÇzFu for some U(EB* Then 

U Fu is countable 

and we infer from Theorem 6.5 that 

JCJ U U [ZW- (pknoRoif)(wnp)]) = o, 

where 

P = {A\L*k(f,A) > 0 } . 

Now suppose 

a G £ * - U U ^ - ( M ^ o W ^ H P ) ] , 

m is a positive integer, and 

S(pn o Rof, {x I w/(«) E F } , z) ^ m. 

Then there exists a Z7E.B such that the set 

G = Fun{w\zezw} 
has at least m elements. Recalling our choice of z we find that 

zGipnoRo lf)(WPi P) for W G G 

and use the disjointedness of G to conclude that 

# 0 » o R o l f , V C\Pyz)^ni. 

The proof is complete. 
We say that 
A is i-fold essential for f in dimension k if and only i f / G C n ( X ) , 

A&rtf, i is an integer, and there exists an RÇzGn such that 

r £u({z\M(pURof,bf{A,r),z)}>i)) 
hm = 1. 

r-+o+ a(k)rh 

We refer to pi o R as an i-fold essential projection for f at A in 
dimension k. 
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Furthermore we define 

£*(ƒ, A) = sup {i | A is i-fold essential for ƒ in dimension k). 

We note that M(p\ o R o ƒ, A/(4, r) , z) is lower semi-continuous 
with respect to (A, R, r, z) on the cartesian product space MfXGn 

X{r\r>0}XEk, and that 

£ & ( { s | M(pk
noRof, Af(A, r), 2) è *}) 

is lower semi-continuous with respect to (^4, i?, r) on the cartesian 
product space MfXGnX { r | r > 0 } for each integer i. I t follows that 
£&(ƒ, ^4) is analytically measurable with respect to A on 5W/. 

THEOREM 6.7. L*k(j, A) è £*(ƒ, -4) /or fECn(X) and A G 3W>. 

PROOF. If R£.Gn, then 

\ * [ / , A,(il, r)] è X*[/>*o £ o ƒ, A,(i4f r)] 

J f [ ^ o * o / , A , ( ^ r ) ] d L ( > 
*J Ei 

è iO({* l M(pk
noRof, A,M, r), z) à *}). 

THEOREM 6.8. If pi, o R is an i-fold essential projection for ƒ a£ 
A in dimension &, €>0 , and 

T(r) = A,(4, r) n { ^ | f(x) G 0»[<R, ef //(il)]} for r > 0, 

,. ^({z\M(pk
noRof,T(r),z)^i}) 

hm : = 1. 
r-K)+ a(k)rk 

PROOF. Suppose t<\. Let 

M = (1 + e2)-1'2, v = uk + t(l - «*), 

note that # < 1 and » < 1 , and choose 8 > 0 so that 

.£*({* | J f ( ^ o * o / f A,(il,f) fy) è *'}) à w(*)f* 

whenever 0 < r < 5. 
Suppose 0 < r < 5 . For j = l, 2, 3, • • • we define 

Z, = EkC\ [z\ru <\z- (ploRo lf){A) \ < ru,""1}, 

£ / , = {*| (ploRof)(x) eZf}9 
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and easily verify that t/ynA/(i4, ru3'~l)CUjr^T(r)t Hence zGZj 
implies 

M(pk
noRof, Af(A, ru~~l), z) = M {pio Roƒ, Uf H A/(4f n/~'), 2) 

SM{ploRof, UiC\T(r),z) 

« MiploRof.Tir)^), 

and we infer that 

Z , n {«I M(pnORof, T(r),z) à f} 

D {«|j |f(#îo^o/>A /(^,f«'"\*) è *} - £[(/U*o//)(il),rf/], 

-G(z,n {*| #(*•£* o/, T(r),z) è *}) 
^ z/a(&)(rw ) — a(k)(ru ) = (u ) (» — w )a(k)r . 

Since the sets Zy are disjoint and <£& measurable, summation with 
respect to j yields the inequality 

J&{{z\M{pnoRof, Tir), z) §; i}) ^ ' \ = *«(k)r*. 
1 — uh 

THEOREM 6.9. Suppose 

f€zCn(X), V is an open subset of 5W/, 

**(ƒ, {x\mf(x) G F } ) = f ZÎ(/, il)JflJU < oo, 

P = F H U | L Î ( / M ) > 0 } , #*(P) < co, 

e = Fn{ii|e*(/ f4) >o}. 
(1) P and Q are analytic subsets of 9tif, and QC.P. 

Hk
f(Qr\mf[&f(Ayr)}) h 

(2) lim — = 1 for H f almost all A in Q. 
r-xH- a(k)rk 

(3) Hf (W) = f N(lf, W, y)d3Ck
ny for every analytic set W C Q. 

(4) fg(A)dHk
fA=f E g(A)dx£y 

for every analytically measurable function g on Mf. 
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(5) Lk(f, A) = L*k(f, A) for Ef almost all A in Q. 

(6) For H} almost all A in Q the following implication holds: 
If i>0, i ?£G n , and pi o R is an i-fold essential projection for f at 

A in dimension k, then Oj[i2, l/(A)] is a Hausdorff k tangent plane of 
1,{Q) at lf{A). 

(7) hiQ) «• a Hausdorff k rectifiable subset of E„. 

PROOF OF (2). Since H*f(Q) < oo and H}(P-Q) < » , we have 

Hk,(Qr\m,[Af(A,r)]) 
lim sup g 1 

r->o+ a{k)rh 

and 

Hk
f(Pr\Mf[Af(A,r)]-Q) 

lim = 0 
r-*o+ a(k)rk 

for Hf almost all A in Q. 
On the other hand if A is any point of Q, then there exist i>0 

and RÇzGn such that p% o R is an i-fold essential projection for ƒ at 
A in dimension k. For any positive number r which is so small that 

mf[AM,r)]CV 

we infer with the help of the theorems 6.3 and 6.5 that 

Jb{{z\M{ph
noRof, Af(A, r), z) à i) 

-~(ploRolf)(P(^mf[Af(A,r)})) = 0, 

Hf(PH mf [A,(A r)]) è - G ( ^ n o i ? o lf)(P H «/[A/Cil, r)]) 

à - O d a l i f ^ o X o / . A / C i l . r ) , * ) £ *}). 

I t follows that 

lim inf è 1. 

PROOF OF (3). Inasmuch as we already know that 

N(lf, W, y)dX*y £ Hk
f(W), ƒ f Ek 

it is sufficient to prove the following statement: 
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If 0 < / < l and €>0, then there is a partition F of W such that 

sup diameter Z < e, 
Z&F 

E 3£[lÀT)]ètHh
f(W)-€. 

TGF 

To prove this we choose an open subset U of Vît/ for which 

WCUCV, Hf(U C\P -WO < € 

and let G be the family of all sets Z such that 

Closure mf [Af(A, r)] = Z C U, A &W, 0 < 2r < e, 

to(*)r* < Wn[l/(Zr\ P)] g Hf(Zr\P) < fXa{k)rh 

for some -4 and r. Then G covers £T* almost all of the W in the sense 
of Vitali, and the Vitali covering theorem [M, 4.1] yields a countable 
disjointed subfamily H oî G such that 

H)(W - u zUo, 
\ ZEH / 

We let 

choose such a partition P2 of W—UZ^HZ that 

sup diameter P < e, 
5TE.F2 

and define 

It follows that 

t2Hk
f(w) g E t2Hf(zr\p) g £ ocn[//(znp)j 

z E # ZGH 

£ Z (5Cn[̂ zn wo] + nhzn p - wo) 

g Z acî[/,(70] + fi/Vnp-wo 

PROOF OF (5). By virtue of (2) the usual theorem on the differentia-
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tion of an indefinite integral is valid on Q. We infer, for H) almost all 
A in Ç, that 

f LIU, A)dHfA 
J mt\Lf(A.r^ 

Lkif, A) = urn = 

and use Theorem 6.5 and (2) to conclude that the limit on the right 
is equal to 

X»[/,A/(il,r)] 
hm • 
f-x>+ a(k)rb 

PROOF OF (6). Defining 

F = {y{ 2~" g sJ[//Q), y] £ ©*[l,(l»), y] ^ l}, 
»f = e n { i | M i ) e F } , 

we find that 

3Cn[//(0] g 3CÎ[/,(P)] < » , 3CÎ[WQ) " F] = 0, 

fl/fô " W] = f #(/,, Ö - W, y)dxHy = 0. 
J En 

Now suppose .4 G W, i ' i s a positive integer, and the hypotheses of 
Theorem 6.8 hold. Applying the Theorems 6.3 and 6.5 as in the proof 
of (2) we conclude, for all sufficiently small positive numbers r, that 

£h{{z\M{ploRof,T{r),z)^i)) 

û£A(ploRol,)(PC\mAT(r)])\ 

Û Kn[l,(Pnmf[T(r)])] £ Kn(lf(P) C\ f[T(r)]) 

g 3cl(lf(P) H On[R, €, 1,{A)\ C\ K[lf(A), r]). 

I t follows that 

<3kn[lf(P) H ot[R, e, l,(A)l 1,{A)) à 1, 

5>n[WP) - ol[R, e, lf{A)], lf(A)} = 0. 

THEOREM 6.10. Suppose fÇ.Ck(X) and U is the union of all those 
open subsets V of 'M/ for which 

**(ƒ. {*!*»/(*) € F } ) < » . 
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Then: 

(1) L*k(ff A) ^ lim supZ>[/, r, Af{A, r)] for A G M,. 
r-*0+ 

(2) £*(ƒ, 4) £ lim inf D\f, r, Af(At r)] for A G Mf. 

(3) If W is an open subset of Mf> y(~Ek, r >0, and Z is an essential 
canonical region of (ƒ, {x|ra/(x)GJ^}, y, r)> then there is an AÇ^W 
for which If (A) =y, Af(A, r) = Z, and 

limsupZ>[/, /, Af(A, t)] ^ 1. 
*->o+ 

(4) ƒƒ Wis an open subset of Mf, AÇ.W, and 

lim inf D[f, r, Af(A, r)] < lim supZ>[/, r, At{A% r)]f 
7—+0+ 7—>0+ 

*Âe« Af(f, [x\m/(x)GPF}, 1,{A)) = °°• 
(5) If W is an open subset of Jtff and yG-E*, then 

£ Lt(f, A)^M(f,{x\ m,{x) G W}, y). 
AÇZW,1/(A)=*V 

(6) If W is an open subset of Mf, yÇîEk, and 

M(ff {x\mf(x) ew},y) < « , 

then 

M(f, {x\mf(x) G W], y)= £ lim D[f, r, Af(A, r)]. 
AGw,l/(A)=v T-+0+ 

(7) If W is an open subset of Mf, then 

X*(/, {x\mf(x) ew})= f L*k(f, A)dHk
fA 

= f £ £*(ƒ, y)dJby 
J Ek AGw,l/(A)^y 

(8) For Jjc almost all y in Ek the following implication holds: 
If W is an open subset of U, then 

M(f, {x | %(*) G W], y) = £ L*k(f, A). 
AGW,1/(A)^V 
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r * . 

(9) Lk(f, A) = £«(ƒ, A) = e„if, A) = lim D[f, r, A,(A, r)] < oo 

for H} almost all A in U. 

(10) £**(ƒ, A) = £»*(ƒ, 4 ) = co for A & M/- U. 

PROOF OF (1) AND (2). If AEMf, r > 0 , and 

Z>[/,r,A,(il,r)] è i, 

then 

Jf [ƒ, A/i l , r), y] è « o r y G K[lf(A), r ] , 

X*[/,A,(ilfr)] è * 0 ( { y | J f ^ A / ^ f ^ y ] è f}) = i«(*)r*. 

PROOF OF (3). We define Z0, Zi, Z2, Z3, • • • inductively in such a 
way that Zo = Z and Z* is an essential canonical region of 
(ƒ, {x\ m/(x) G W}, y, ^2~*) with ZiCZZ^i for every positive integer i. 
We infer that Closure Zi is a compact subset of Zi_i for every posi­
tive integer i, and choose 

00 00 

ö G f l Closure Zi ~ f) Ziy A = m/(a). 

I t follows that 

a £ Z C H « / ( * ) G TP}, 4 G ïT, 

Z,(4) = /(a) - y, A,(il, r) = A,(a, r) = Z, 

A/(i4, r2-*) = Zi for f = 1, 2, 3, • • • . 

PROOF OF (4). There exist positive numbers 

n > fi > f2 > rz > • • • 

such that 

£[ƒ, /-,_!, A,(il, r*-,)] 9* £[ƒ, r«, A,(il, r<)] 

for i~ 1, 2, 3, • • • . Hence we can associate with each positive integer 
i an essential canonical region Zi of (ƒ, { # | m / ( # ) £ W } , //(il), r<) 
such that 

Z, C A/(i4, n-_x) - A/(ii,r,). 

Since Zi, Z2, Z3, • • • are disjoint subsets of {#| #*/(#) £ W } and 

S[f, Zif lf{A)} à 1 for i = 1, 2, 3, • - • , 

we conclude that 
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M[f, {x\mf(x) G W}jf(A)] è S[f, {x\mf{x) G W}tl,(A)] « oo. 

PROOF OF (5) AND (6). By virtue of (3) we have 

M(f, {x| »,(*) G W}, y) = lim £ £>[ƒ, r, Af(A, 0 ] 

whenever W is an open subset of M/ and yÇzEk. 
Hence (1) implies (5), and (4) implies (6). 
PROOF OF (7). Consider the statement obtained from (7) upon re­

placing " = " by " à " in front of each of the three integral signs. This 
is a true statement by virtue of Theorem 6.2, the remark following 
that theorem, and Proposition (5) of the present theorem. However 
the first and last term in this string of inequalities are equal by 
Lemma 6.4. 

PROOF OF (8). Let B be such a countable basis for the topology of 
U that 

ML {x\mf{x) E V})< oo for V G B, 

and let 

Zv= iy\ Jf(ƒ, {x | mf(x) ev},y)< E £ Î U A)\ 

for V (E B. From (5) and (7) we infer that 

jfriZv) = 0 for V G B, 

J^( U Z ^ - 0 . 
\VGB / 

Now suppose 

y G Ek - U ZY 
VE.B 

and W is any open subset of Mf. 
If Au A2, • • • , Am are distinct elements of W such that l/(Ai) =y 

for i = l , 2, • • • , w, then there exist disjoint elements Vi, V2) • • • , 
Fw of 5 such that -4»-G Vi for i = 1, 2, • • • , m. I t follows that 

£ £*(ƒ, 4,) s Z L LÎ(/f 4) 
t = l *=1 AGVi,l/(A)=:v 

m 

- E W , {*I»X*) e F«},y) 
«=i 

g !/"(ƒ, |*|«K*) GW\,y). 
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PROOF OF (9). We see from (1), (2), and Theorem 6.7 that 

lim inf D[f, r, Af(A, r)] £ lim sup£>[/, r, Af(A, r)] S Ll(J, A), 
r-»0+ r-*0+ 

lim inf D[f, r, Af(A, r)] Z £*(ƒ, A) £ £,»(ƒ, A) â L*(f, A) 
r-*0+ 

whenever A £5fof/. Choosing B as in the proof of (8) we shall complete 
the proof by showing that 

f lim inf D[f, r, Af(At r)]dB$A à f /£(ƒ, A)dHfA 
J v r-*0+ J V 

whenever F £ 5 . 
Suppose FGJ3. By (6) and (7) we conclude that 

x lim inf D[f, r, Af(A, r)]dH/A 
V r-*0+ 

â f Z lim inf D[f,r,Af(A,r)}d£ky 
J Ek AGv,lf(A)=v r-*0+ 

= f Jf (ƒ, { x I *»,(*) G F } , y)dJ&y = f LÎ(/, ;4)<*fl£l. 
J Ek Jv 

7. Fréchet equivalence. If fÇzCn(X) and T is a homeomorphism 
of X onto X, then ƒ and / o T behave identically with respect to the 
geometric properties discussed in the two preceding sections. These 
mappings have the same multiplicities, the same areas, and isometric 
middle spaces. However ƒ o T may be preferable to ƒ on account of 
differentiability properties which are not invariant under homeo-
morphisms of X. 

This passage from a mapping to a geometrically equivalent one, 
which may have superior analytic properties, can be extended by a 
limiting process. lif^Cn{X) and 7\, JP2, T ,̂ • • • are homeomorphisms 
of X onto X such that ƒ o 7\ converges as i tends to infinity, then 
the limit mapping is geometrically very similar to ƒ but may be 
smoother and easier to compute with than ƒ. An example is the 
familiar process of reparametrization by arc length which replaces 
an arbitrary curve of finite length by one satisfying a Lipschitz 
condition. 

The formal definition follows : 
Suppose fÇzCn(X) and gÇ.Cn(X). We say that 

f and g are Fréchet equivalent 
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if and only if there exist homeomorphisms 7\, T2, r3 , • • • of X onto 
X such that for each compact subset Q of X 

(ƒ o Ti){x) —> g(x) uniformly f or x G Q as i —» <*>, 

(g o J1»- )(#) —+f(x) uniformly for x G 6 as i —» °o, 

Closure U,1i [7\-((?)Urf ^Ç)] is compact. 

I t is easy to verify that we have indeed defined an equivalence rela­
tion on Cn(X). However, most important for the theory of area is 
the following proposition: 

Iff and g are Frêchet equivalent elements of Cn(X), then there exist 
homeomorphisms Tu T2, T$, • • • of X onto X and an isometry u of 
ffîg onto Vît/ such that 

IfOU = l g 

and such that for each compact subset Q of X 

{ntf o Ti)(x) - > ( « o mg)(x) uniformly for x ÇzQ as i—* <*>, 

(mg o Ti )(x) —> (u o mf)(x) uniformly for x G Q as i —> <». 

To prove this we start with a sequence of homeomorphisms 
Tu JT2, !T3, • • • which have the properties stated in the definition of 
Fréchet equivalence. Later we shall replace this sequence by a sub­
sequence. 

If aÇzX, a ' £ X ' , and e>0 , then there exist a positive integer j 
and neighborhoods V and V' of a and a' such that 

df[(mfo Ti)(x), O/O Ti)(x')] g dg[mg(x), mg(x')] + e 

whenever # G V, x ' G F ' , i is an integer, and i>j. 
To check this we choose a continuum WCX for which 

a G W, a' G W9 diameter g(W) < d0[mg(a), mg(a
f)] + e/5 

and secure a positive integer j and open connected subsets V and V' 
of X such that 

a G V, a' G V', Closure V and Closure V' are compact, 

dg[mg(x)1 mg(a)]<€/5 and | (fo Ti)(x)—g(a) \ <e/5 for xÇiV and i>j, 

dg[mg(x'),Mg{a')}<e/Sa,nà\{foTi)(xf)-g(a') | < e/5 for*'G F'and i>j, 

| (ƒ o Ti)(x) - g(x) | < e/5 tor x£W and i > j . 

Letting 

Z = WKJ Closure F U Closure V\ 



350 HERBERT FEDERER [May 

we conclude for ^ G ^ x ' G F ' and i>j that 

df[(mfo Ti)(%), (mfo Ti)(x')] 

^ diameter (ƒ o T%)(Z) g diameter g(Z) + 2€/5 

g dg[md(a)f mg(a')] + 3e/5 S dg[mg{x)} tng(x')] + e. 

The preceding equicontinuity property implies the following: 
If Q is a compact subset of X and e>0, then there exists a positive 

integer j such that 

d/[(m/0 Ti)(x), (m/O T{)(x')] < dg[mg(x)f mg(x')] + e 

whenever xGQ, #'£(?, i is an integer, and i>j. 
In view of this and also of the fact that 

Closure {(m/O Ti)(x) \ i = 1, 2, 3, • • • } is compact for x G X 

we may just as well assume, after passage to a subsequence, that 
there is a mapping U of X into Mf such that 

(nif o Ti)(x) —» U(x) uniformly for x G Q as i —* <» 

whenever Q is a compact subset of J?. 
It follows that 

d/[U(x), U(x')] S dg[m0(x)9 mg{xf)\ for x G X, #' G X 

and that there is a function w on VXtg to ffrf/ such that 

U = UOMgy 

df[u(A), u(A')} £ d,(il, iiO for ^ G 5W„ il ' G 5K,. 

Furthermore 

(//o w) [m^a;)] = lf[(uomg)(x)] = Z/[lim (mf o T1*)(a;)] 

= lim (ƒ o 2\)(*) = g(*) = lg[mg(x)] 
f-*oo 

for #G-X\ whence // o u = lg. 
By symmetry we may also assume, after passage to another sub­

sequence, that there is a function v on M/ to VXtg such that 

(mg o Ti )(x) —> (z> o mf)(x) uniformly for # G Q as i —> oo 

whenever Ç is a compact subset of X and such that 

d0[v(A), v(A')] g d>(ilf A') for ,4 G at/, A' G af/. 

We shall complete the proof by showing that the functions u and v 
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are inverse to each other. 
Suppose A (~9rtf and e > 0 . Letting 

oGA,bev(A),Q= {r7 l(f l ) | f = 1,2,3, • • • } U {b}, 

we choose a positive integer j such that 

df[(mfo Ti)(x)} (mfo 7^)0')] £* d0[mg(x)f tng(x')] + € 

whenever xGQ, #'G(?, and i>j. We infer that 

d/[A, (uov)(A)] = d/[w/(a), ( « o w J ( } ) ] 

= df[rnf(a), lim (m/o 7\)(J)] 

== lim df[nif(a), (mfo T{)(b)] 

= lim </,[(w/0 TJlT^ia)], (mfo T{)(b)\ 
i—>oo 

g lim sup ^[(w<7 o Ti )(a), mg(b)] + e 
i—*oo 

= i a [ (»o%)(a ) , »(-4)] + € = ia[»(-4), t>(4)] + e « e. 

I t follows that 

(* o t>)C4) = A for ^ G af/. 

Similarly we find that 

(v o u)(A) = A for 4̂ G SW?. 

The proof is complete. 
The preceding proposition has the following corollaries: 
If V is an open subset of Mg and W is a compact subset of 

{x\ mg{x) G V}, then there is a positive integer j such that 

Ti(W) C{x\ m,(x) G u(V)} for i> j . 

If V is an open subset of Mg, then 

X*(«, {x\mg(x) ev}) = Xfc(/, {x\mf(x)eu(V)}). 

If V is an open subset of Vtfg, R&Gny and sG-Efc, then 

S(pno Rog, {x\ m„(x) 6 F ) , z ) 

= S(ploRofy{x\mf{x)Gu(V))yz)y 

M(pnoRogy {x\ m„(x) GV},z) 

= M(ptoRof, {x\mf(x) e«(TO},«) . 
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If AÇzMg and r > 0, then 

u(mg[Ag(Af r)]) = tnf(Af[u(A), r\). 

If A &ttg, then 

L*k{g, A) = L*k[f, u(A)], L*k(g, A) = L*k[f, u(A)\, 

ek(g,A) = eh[f,u(A)]. 
If VCM0, then HÏ(V)=Hf[u(V)]. 
If VCJrtg and yÇîEny then 

N(!„ V, y) = N(ff9 «(F), y). 

I t follows that the Hausdorff N areas of // and lg are equal. How­
ever the Hausdorff N areas of ƒ and g need not be equal, and the 
integralgeometric N areas of ƒ and g need not be equal. The reason 
why N(ft X, y) may differ from N(g, Xy y) is that N(h, X, y) is not 
lower semi-continuous with respect to h on Cn(X). The invariants 
5, M, and \k of Fréchet equivalence are lower semi-continuous func­
tions of compact origin. 

We observe also that if X is the set of all those points of X which 
do not have a &-cell neighborhood in X and if 

9tif = Mf H {A I A/04, r)r\X 5*0 îor all r > 0} , 

then u(Mg)=VYC'f. 
A cyclic mapping is a function ƒ G C»(-X") whose middle space Mf 

has no cut point. A nondegenerate mapping is a cyclic mapping ƒ such 
that 'M} has more than one element. 

For example a cyclic mapping of a two-cell XC.E2 is one whose 
continua of constancy do not separate X, while a nondegenerate 
mapping is one whose continua of constancy separate neither X nor 
£2. 

The usefulness of the concept of Fréchet equivalence for the 
theory of two-dimensional Lebesgue area is largely due to the follow­
ing proposition of C. B. Morrey ( [MCB], [CE 4]) : 

If X is a two-cell, /£Cn(-ST), L2(f)< <*>, and ƒ is a nondegenerate 
mapping, then ƒ has a Frêchet equivalent g whose partial derivatives 
D\g(x) and D2g(x) exist for J^j, almost all xinX — X and whose Lebesgue 
area L2(g) equals the Dirichlet integral 

4 f I Dig(x) I2 + I Dig(x) \H&x. 
£ J x-± 

This proposition makes the techniques of classical analysis avail-
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able for the discussion of all Fréchet invariant properties of nonde-
generate mappings of two-cells with finite Lebesgue area. Further­
more there are two devices by which results concerning certain geo­
metric properties can be extended from nondegenerate to arbitrary 
mappings of two-cells. 

If X is a two-cell, / £ C W ( X ) , and ri, r2, r%, * • * are the monotone 
retractions of Mf onto its proper cyclic elements, then 

(If orio mf)t (If or2o m/), (If orzo m/), • • • 

are cyclic mappings in Cn(X). They are called the cyclic components 
off. Certain properties possessed by every cyclic component o f / a r e 
inherited by ƒ. Such properties of mappings are said to be cyclically 
extensible (see [R 5]). 

If X is a two-cell, ƒ G Cn(X), and ƒ is a cyclic but not a nondegenerate 
mapping, then ƒ maps X onto a single point yÇzEn. For each €>0 
there exists a two-cell T such that 

| * | | / ( * ) -y\ï:e} CTCX-X. 

The mapping (f\ T)Ç£Cn(T) is called an internal approximation of f. 
Every cyclic component of (f\ T) is a nondegenerate mapping in 
Cn(T). Certain properties possessed by every internal approximation 
of ƒ are inherited by ƒ. Such properties of mappings are said to be 
internally extensible. 

Now if a property of mappings of two-cells is both cyclically and 
internally extensible and if it is possessed by every nondegenerate 
mapping of finite Lebesgue area, then this property is successively 
inherited by all internal approximations of those cyclic mappings of 
finite Lebesgue area which fail to be nondegenerate, by all cyclic 
mappings of finite Lebesgue area, and by all mappings of finite 
Lebesgue area. 

8. Mappings of locally connected finitely connected plane continua. 
For any two subsets A and B of E2 we define 

y (A, B) = sup inf | x — y \ 

and the Hausdorff distance 

p(A,B) = sup {y(A, B)t y(B, A)}. 

Letting 

r = {̂ 4 | A is a non vacuous compact subset of E2), 

0 = T /°\ {4 | A is connected}, 
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we note that T is a boundedly compact metric space with respect to 
the Hausdorff distance, and that the set 0 of all plane continua is a 
closed subset of I \ 

With each A C.E2 we associate 

A* = the union of all bounded components of E2 — A, 

cr(A) = inf {y(A, W) \ W is a component of E2 — A}. 

The following theorem characterizes the finitely connected com­
pact subsets of the plane by means of the function o\ 

THEOREM 8.1. If A ET, then 

<r(A) > 0 

if and only if the number of components of E2—A is finite. 

PROOF. Since y {A, W)>0 for every component W of E^—A, the 
second condition implies the first. 

Now suppose <r(.4) > 0 . Then each component of £2—A contains 
an open circular disc of radius cÇA), whence 

7T • [(r(^4)]2- (number of bounded components of E2 — A) g J(JI(A*) < 00, 

because A§ is bounded. Hence the number of bounded components 
of £2—A is finite. Furthermore E2—A has precisely one unbounded 
component. 

LEMMA 8.2. If A and B are such subsets of JS2 that 

y(A, B) < cr{A) and Boundary B C. A, 

then 

BCA. 

PROOF. Otherwise E^—A has a component W which meets B, It 
follows that 

W P Closure (W P B) P Closure (W - B) 

CWr\ Boundary B C W P A « 0, 

W - B = 0, W C B} a(A) g y(A} W) g y(A, B) < <rU). 

LEMMA 8.3. If 

i G f i , 5 G 0 , A P £ = 0, 4 ' P £# ^ 0, 

then 

either A C B* or BC At 
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PROOF. If A(fcB#, then AC\B* = 0 because the connected set A, 
which does not meet B, is contained in a single component of E2—B. 
It follows that 

AC\(B\J Bf) = 0. 

If also B^A*, then 

A#r\(B\J J3f) = 0 

because the connected set B\JB§, which does not meet Ay is con­
tained in a single component of E2 —A but not in A*, It follows that 
-4#f\2?# = 0, contrary to hypothesis. 

LEMMA 8.4. /ƒ 

i e r , B e 12, A c B#, 

then 

AKJ A* C B*. 

PROOF. The unbounded connected set E2-~B*, which does not meet 
Ay is contained in the unbounded component of E2 — A. Thus 

E2 - B* C E2 - (A U A*)9 AUA*C B*. 

LEMMA 8.5. If AGT, ^l# = 0, and €>0, then there is a 8 > 0 such that 

y (A, B#) ^ e whenever y {A, B) < 8. 

PROOF. We choose r > 0 so that 

A C {x\\ x\ < r} 

and let 

f{x) = inf | x — y | f or x G £2. 

Each point of the compact set 

V = {*| I x\ S nmdf(x) è e} 

is in some unbounded connected open set W whose closure does not 
meet A. Hence V is contained in the union of finitely many such sets 
Wu W2, • • • , Wm. Defining 

m 

Z ^ {x\\x\^r} KJ \J Wi, 

Ô = inf ƒ(*), 
a?E2 
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we see that 8 > 0 and that Z is an unbounded connected set for which 

{x\f(x) £e} CZ. 

If y(A, B)<ô, then Z does not meet B and is contained in the 
unbounded component of £ 2 — B. Thus 

ZCE2- B*, B* CE2-ZC {x\f(x) < € } , y(A,B*) ^ e. 

LEMMA 8.6. Iff maps the topological space X into the circle Y and if 
X has connected subsets A, B, C such that 

f (A n B) <t f{c), f(B next f (A), f(c r\A)<t 1(B), 
then ƒ is an essential map of X into Y. 

PROOF. Otherwise f=h o g where g is a map of X into E\ and h 
is a covering map of £1 onto Y. 

Choosing a, &, c so that 

been A, m em, 
cGAKB, f(c) $/(C), 

we note that g(a), g(b), g(c) are distinct and that one of these three 
real numbers lies between the two others. 

If g{a) is between the numbers gib) and g(c), both of which are in 
the interval g(A), then g{a)Ç.g(A) and f(a)E:f(A)t contrary to our 
choice of a. 

The other two alternatives can be similarly eliminated. 

LEMMA 8.7. If g maps the topological space X into 

and if X has connected subsets E, W, N, S such that 

EC\ N, N r\W, W n 5, S r\Eare nonvacuous, 

g(E) C {(*, v)\u> {}, g(W) C {(*, v)\u< * } , 

g(N) C {(*, v)\v>f,}, g(S) C {(«, v)\v< rj}, 

then g is an essential map of X into Z. 

PROOF. The preceding lemma is applicable with 

f(x) = -, r for x G X, 
\ *(*) - tt, 1») I 

A = E, B = N, C =WUS. 
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LEMMA 8.8. If AST, gGC^AKJA*), and if g\A is an essential map 
of A into E2 — {z}, then z is a stable value of g. 

PROOF. Assuming that 

0 < r < inf I g(%) - z I 

we consider the cohomology diagram : 

# 2 [E 2 , E2 - K(z, r)] < W[E2 - K(z, r)\ 

H\A\J 

g* (g\A)* 

i* fi' 
'A#y A) < El(A) < — — Hl(A U i l ' ) 

Since A\JA* does not separate £2 , the group IP{A\JA*) and the 
homomorphism i* are trivial. By exactness 8' is an isomorphism. 
From this and the fact that the homomorphism (g|^4)* is non trivial 
it follows that the homomorphism 

g*oô = ô'o(g\A)* 

is nontrivial. Hence g* is a nontrivial homomorphism. 

LEMMA 8.9.7/ A &T,BET, CET, 

AUA#CB#, CC(BU B*) - A*, 

geCt[(BVB*)-A*], 

g I A is an inessential map of A into E2 — {z}, 

g | C is an essential map of C into E2 — {z}, 

then z is a stable value of g. 

PROOF. There is a mapping 

JELCABKJBT) 

such that 

f\ [(BVBI)-A'] = g, f(A\JA*)CE2- [z). 

Noting tha t 

f| C = g\C, C\JC*CB\J B*f 

we infer that z is a stable value of/| (CUC#) and of/. Since 

{x\f(x) = z] <Z(BKJ B#) - (il U i l ' ) 
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and (BKJB*) - (AKJA*) is open in BUB*, it follows that z is a stable 
value of 

f\ [(BVBf)-(A\JA*)] = g\ [{B\J &) - {A\J A*)] 

and of g. 

THEOREM 8.10. Suppose: 
(1) X is a locally connected, locally compact subset of E2for which 

<r(X)>0. 
(2) GQX and G is open relative to X. 
(3) uGCi(G), veCxiG), geC2(G), and 

g(x) = (u(x), v(x)) for x G G. 

(4) For each z~(zi, 22) £ £ 2 , v(z) is the supremum of the set of all 
positive integers m with the following property: 

G contains m disjoint continua Ai, A2, • • • , Am such that 

m 

z\ = u(x) for x G U Ai, 

z2 G Interior v(Ai) for i = 1, 2, • • • , rn. 

Then: 
(5) v{z) SS{g, G, z) for ^ 2 almost all z in £2 . 

PROOF. Let m be a. positive integer. 
We choose points pi, p2, p%, • • • which form a countable dense 

subset of £2 and define 

Pj = O H {A\A CGvoapi^A*) for i = 1, 2, 3, • • • . 

We also define 

Po = QC\ {4 I il C G a n d ^ # = 0} . 

Corresponding to each m-termed sequence 

? = («1> Î2, • • • , Cm) 

of non-negative integers, and for any rational numbers r<s, we let 

F(q, r, s) 

be the set of all w-termed sequences 

A = \Ai, A 2, * * • , Am) 

with the following properties: 

Ai G Pqi f or i = 1, 2, • • • , m; 
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are disjoint; 
m 

u is constant on U Ai\ 

inf v(x) < r < s < sup v(x) for i = 1, 2, • • • , m. 

Setting 
m 

U(A) = u{%) whenever A G ^(^, r, s) and a? G U Au 

we observe that the set 

{21 ?(*) è w} 

is the union of the countably many cartesian products 

U[F(q,r}s)] X {r)\r<V<s}. 

In order to prove that 

S(g>G, z) <£ m for«£2 almost all-in {z\ v(z) *z tn} 

it is therefore sufficient to verify the following statement: 
For each of the above triples (q, rt s) there is a set \x such that 

11 C U[F(q, r, s)], U[F(qf r, s)] — /x is countable, 

^ kt G, (£, rj) ] â m whenever 5 G M and r < q < s. 

For the purpose of proving this we henceforth fix q, r, s and abbreviate 
"F(q, r, s)» by *F.» 

Associating with each AÇzF the 2m-termed sequence 

# # # 
041, Ai KJ Ah A2, A2\J A*, • • • , A 

we establish a one-to-one correspondence between F and a subset of 
the 2m-fold cartesian product of I\ Since T is separably metrized by 
p, the set F becomes a separable metric space with the distance 

£ P(^U A) + p{Ai \J Au B( U Bi) 

between 4 G-F and BEF. 
We let i? be the set of those points of F at which the function U 

has either a relative maximum or a relative minimum, infer that 

U(R) is countable, 

and define 
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M - U(F) - U(R). 

Now suppose 

{G/*, r<v<s, l~U{A)% AGF-R. 

We successively choose 

*, Gu Gi, • • • , G«, ' ' , Pi, F2, • • • , Vm, Wu W%, • • • , Wm, *", B, C 

in such a way that 
0<t<<r(X), 
Gi = Xni{x\m(9GAi \x-y\<t], 
Gi, G2, • • • , Gm are disjoint subsets of G, 
0<t'<t, 
y (Ait Z#) <t whenever g*=0 and y(Aiy Z)<t', 
Vi and Wi are connected and open relative to X, 
Closure (VjUWi) is a compact subset of G*, 

F»f\4i and WiC\Ai are nonvacuous, 
p(x) <r for x G F», v(x) > s for x G ^ , 
0 < 3 * " < / ' , 
ViC\Z and WiC\Z are nonvacuous whenever Z C - ^ and Y ( Z , -4») 

BGF, CEF, 
D i x p(il<, £*)+p(^A^f, £,U3f) <*", 
EtiP(i4<, C,)+p(^iU^#, CiVCtXt", 
U(B)<£<U(C). 

I t follows for each integer i between 1 and m that ViC\Bi, WiC\Biy 

ViHiCi, WiC\d are nonvacuous and that one of the following three 
alternatives holds: 

(i) ^ = 0, 
(ii) qi>0 and BjJBÎCCt, 
(iii) ^ > 0 and CjJCtCB{. 
In case (i) holds we define 

Zi = Bi U C< U Closure (7 , U W<), X< - Z* U zf 

and conclude that 
y(Ai9Zi)<t', 
y(X, Xi)Sy(Ah Xi)<t<<r(X), 
Boundary XiCZiCX, 
XiCZX, XidGi, 
g\ Zi is an essential map of Z* into £2— {(£> v)} > 
(£, 77) is a stable value of g\ Xi, 



J9$î] MEASURE AND AREA 361 

In case (ii) holds we define 

Xi= (CiKJC% - B{ 

choose continua VI and WI such that 

V'i C XiC\ Vit W'i C l i H Wi, 

Vi C\ Bit Wi C\ Bit Vi r\ d, W4 O G are nonvacuous, 

let 

and conclude that 

y(X, Xi)%y{Ah Xi)gy(Ai, Bi)+y(Bif Xt) 

= y(Ai,Br)+y{BiyJBi,X%) 

Sy{Au Bi)+y(BiVBt, CiKJCh<3t"<t<t<v(X), 

Boundary XiCBiKJdCX, 
XidX, XiCZGi, ZidXi, 
g\ Zi is an essential map of Z»- into E2 — {(£, rj)} > 
g I Bi is an inessential map of J5»- into E2 — {(£, rç)}, 
(£, 77) is a stable value of g\ Xif 

S\g,Gi,&n)]zi. 
Since the third alternative is quite similar to the second, we ob­

tain the result that 

S\g,Git ({, 1)] è l f o r i = 1, 2, . . . ,m 

whence it follows that 

S\g,G,fov)]èT,S\g,Gi,(i,v)]èi*. 
1 = 1 

The proof is complete. 
Actually it is true that 

v(z) = S(g, G, z) for £2 almost all z in E2 

because v(z)^S(g, G, z) for all z in £2 , but we shall neither prove 
nor use this fact here. 

THEOREM 8.11. Suppose: 
(1) X is a locally connected, locally compact subset of E2 for which 

<r(X)>0. 
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(2) GQX and G is open relative to X. 
(3) ue&iG), vGCi(G), wea(G),fGCz(G), gGC2(G)t /*GC2(G), 

and 

f(x) = (u(x), w(x)9 v(x))t g(x) = (u(x), v(x))t 

h(x) = (#(#), w(x)) for x GG. 

(4) fE2S(g,G,z)d&z<co. 
Then: 

(5) £2 [wrn%-?#,)]=(). 
PROOF. The elements of the set 

are continua on which the functions h, u, and w are constant, but 
the functions ƒ and v are not constant. The denial of (5) implies the 
existence of rational numbers r < s and a Borel set P of VïCh such that 

P C M ^ r , -GfrCP)] > O , 
inf v(x) < r < s < sup »(#) for A £ i5-

Defining the function Î> as in the preceding theorem we find that 

*(& *?) ^ (number of elements of {f | (£, f) G /A(P) }) for r < t? < 5, 

00 > f S(g, G, *)£<>£ f K*KO^ f f'vfarddJ&idJbt 
J E2 * E2 J — 00 J r 

ƒ 00 

(number of elements of {f | ft, f) G /»(P) }KGl, 
- to 

{f I (?. f) G /A(P) } is finite for.& almost all ? in Eu 

0 = ƒ "*0({f I tt, f) G /»(P)})40« = -G[/»(P)] > 0. 

For the special case in which X = G is a 2-cell the preceding Theo­
rem 8.11 was proved by L. Cesari in [CE 2]. He used it in showing that 
L2(j0 does not exceed the sum of the Lebesgue areas of the three 
orthogonal projections of ƒ onto the coordinate planes. 

THEOREM 8.12. Suppose: 
(1) X is a locally connected, locally compact subset of E2 for which 

a(X)>0. 
(2) GQX and G is open in X. 
(3) fECn(X), n^3t and\2(f, G)< 00. 
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(4) REGn and h = £oRof. 
Then: 

(S) Jb[ikÇrr\Mh-Mf)]~o. 

PROOF. Defining the functions 

u, wy vlt • • • , zv-2 G Ci(G) ; 

git * * • » gn-2 G Ca(G) Î /li " • • » /n-2 G C8(G) 

so that 

(Rof)(x) = («(*), w(a), t>i(a?), • • , »n-j(*))f 

£ƒ(*) = («(*) . » Î W ) , ƒƒ(*) = 0(#)> wO), »yC )̂) 

for xGG and j = l , • • • , w ~ 2 , we conclude that 

A(#) = (,«(#), w(#)) for # GG, 

f S(g* G, a )40» ^ Mg*G) g \ 2 ( / , G) < oo for j = 1, • • • , n - 2, 

n-2 

rnat j - iM/CUrnac»- 5W>/f 

n-2 

•C[Wr n % - SK»] ^ E-OlWr n ac* - at},)] - o. 

THEOREM 8.13. Suppose: 
(1) -X" w a locally connected, locally compact subset of E2 for which 

<r(Z)>0. 
(2) GC.X and G is open in X. 
(3) fGC2(G) and X2(/, G )< oo. 
(4) P = Mfr^{A\A^0 and lim supr.o+ D\f, r, Af(A, r ) ] > 0 } . 

(5) ^ 2 [ W P ) ] = 0. 

PROOF. I t is sufficient to consider a point g G £ 2 and a set 

QCPr\{A\qGA' andS[/ ,G, lf(A)] < oo } 

such that If is univalent on Qy and to prove that Q is countable. 
The subset Q of Î2 is a separable metric space with the distance 

p(i4, S) + p ( i U i ^ U ^ ) 

l 5 G Ç . Furthermore Ç is sin 

(QXQ)n{(A,B)\ACB*\. 

between AÇ^Q and 2?£Ç. Furthermore Ç is simply ordered by the 
relation 
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We recall that any function on a separable metric space into an 
ordered set has only countably many relative maximum or minimum 
values. Applying this principle to the identity map of Q we find that 
only countably many points of Q are isolated on the right or left. 
Hence Q has a countable subset Q' with the following property: 

If i4£(? —(?'» t n e n there exist sequences 

Bu Z?2, Bs, • • • ; Ci, C2, CZJ • • • 

of elements of Q such that 

BiCA*, A C e t forj = 1, 2, 3f •• • , 

lim p(Af Bi) + p(A KJ A*, B, U B*) = 0, 

lim P(A, Cj) + p(A U A*, C, U C% = 0. 

We shall prove that this property of A violates our assumptions 
about Q, thus showing that Q = Q' and Q is countable. 

The sets 

Xi= (C,VC*) - B*t 

are continua for which 

A C Interior Xh Boundary X, C Bj UCjCGCX, 

y(A, Xd S y(Af B,) + y{Bt KJ Bh C,- U c5), 

lim y(A, Xt) = 0 < (r(X), 

XjCGfor large7, 

lim sup d/[-4, *»/(#)] = 0. 

There are positive numbers ri, r2, r3, • • • such that 

lim tj = 0, 

D[f, rh &f(A, r,)] > 0 for i = 1, 2, 3, • • • . 

Passing to subsequences we may assume that 

GDXiDAMtfdDXM, 

/(Boundary X,) C {//(£/), /,(C,)} C £2 - £[/ ,(i l) , r,] 

for every positive integer j . 
Now consider the cohomology diagram : 
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H\Eit E, -

MEASURE AN 

JT\lJA\ v ,]\ 4 
A I / A ^ ; > ri\) < 

ƒ* 
Ô' 

H\Xh Boundary X,) < 

D AREA 

- Z7lfE\* — TT\lJ A\ * .h 
-a ^ 2 — A [ ^ A ; , r 3 j ; 

(/| Boundary X,-)* 

- ^(Boundary Xj) 

Since /(Boundary X3) is a finite set, the homomorphism 
(ƒ| Boundary Xj)* is trivial. I t follows that the homomorphism 

ƒ* o Ô = Ô' o (ƒ I Boundary X,-)* 

is trivial. Furthermore ô is an isomorphism onto the domain of/*. 
Hence /* is a trivial homomorphism. 

We conclude that Xj contains an essential canonical region Zy of 
(ƒ, G, //(i4), ry) other than Af(A, r,-). Then the sets Zi, Z2, Z3, • • • are 
disjoint and 

S\f,G,lM)]= oo. 

THEOREM 8.14. Suppose: 
(1) X is a locally connected, locally compact subset of E^for which 

<r(X)>0. 
(2) f&Cn(X) andn^Z. 
(3) Fi, F2, Fs, • • • a#d TF are #££# subsets of M/. 
(4) Î7;= {* | f»/(*)eïM arcd X2(f, 17<)< » / w * - l , 2, 3, • • • . 
(5) U r = i ( F , n r n { ^ | 4 # = 0 a ^ ^ C I n t e r i o r U*})CW. 
(6) -RGGn and h = p2

n oRof\ U«til7<. 
Then: 

(7) Jb[hÇrrMHCk-M,)]=o. 
(8) S(*, U ^ Z / * z)£S(h, {x\f(x)Ç:W), z) for J^almost all zin E*. 
(9) 5(A, Uf^C/*, z) S 2 * - i 5(Â> ^ *) / ^ £ 2 a/wos* a« z in E2. 

PROOF OF (7). We define 

00 

Q = U J<*ii7«>[rn»w,> - afa,^)], 
»=i 

note tha t 

-G«2) = 0, 

and shall complete the proof by verifying that 

h[Tr\Mk-Mf]CQ. 
We suppose 



366 HERBERT FEDERER [May 

note that m/(A) is a compact subset of 
CO 

U V«, 
4 - 1 

and choose closed sets P*C Vi such that 
00 

mf(A) C U Ft. 

Then 
m,{A) - U {Fi(-\mt{A)l 

m/(A) is a nondegenerate continuum, 

nif{A) is not zero-dimensional, 

and there exists a positive integer i such that 

F» P\ ntf(A) is not zero-dimensional, 

P* r\ ntf{A) is not totally disconnected. 

Choosing a nondegenerate component B of FiC\m/(A) and a set C 
such that 

ceaf(W), {x\mf(x)eB\ cccAt 

we conclude that 

«^0 = hkwoic) e Q. 
PROOF OF (8) AND (9). We define 

Pi = Mhr\ {A\AC Uh A* 5* 0, and lim sup D[hf t, Ah(A, t) 1 > 0} 
t-K)+ 

for i = l , 2, 3, • • • and infer that 

&(ih [(r n % - i / ) u ü Pil) = o. 

Now suppose 

z e E2 - / J ( r n % - 9w» u u P<1 

and Z is an essential canonical region of (A, U^C/», s> r). 
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According to Theorem 6.10 there is a set A such that 

Aevr\Mh, h(A) = *, Ak(A, r) = Z, 

limsupZ>|>, /, Ah(A, t)] > 0, 

It follows that 

A G Jrtf, A C Interior Ui for some positive integer i, 

^# - 0, il C j ^ l % W G I f } 

and we can choose / so that 

0 < t < r, Z)|>, t,AK(A, t)] > 0, 

M i , l ) C P i n {x\mf(x)ew}. 

Hence Z contains the essential canonical region Ah(Ay t) of 
(Aj Ui, Uh z, t) and of (ft| {x|m f(x)£W}, {x\mf(x)£W}, z, t). 

THEOREM 8.15. Suppose: 
(1) X is a 2-cell 
(2) fGCn(X)andL2(f)<*. 

Then: 
(3) U(f)£I$[(Mt-Mi)ni{A\ei(f, A)£1}1 
(4) L,(f)-fl?[(9>t,-9tf;)n{il|e2(/ f i l ) - l } ] . 
(5) Z?(f, il ) = L*2(/, il) = &(ƒ, A ) = 0 or 1 /or ij? a/** <u* a// il in 5W>. 
(6) !Tfte stable area 

f S(p*noRof,X,z)dJ& 

of the projection p%o Ro f of ƒ is continuous with respect to R on 
Gn. 

(7) IfREGn, then 

S(ploRof,X,z) = N(ploRolf, {i4|£2(/,i4) = l},«) 

for «£2 almost all z in E%. 
(8) If RÇzGn and W is an open subset of Mf, then 

S(plo Rofy {x| mf(x) G W], z) 

= N(ploRolfy WC\ {A\ e*(f,A) = 1},*) 

for j(ji almost all z in E2. 

PROOF OF (3) AND (6). The properties (3) and (6) of ƒ are Fréchet 
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invariant as well as both cyclically and internally extensive. Hence 
we need only consider the special case in which ƒ is a nondegenerate 
mapping whose partial derivatives Dif(x) and D%f(x) exist for £2 
almost all x in X — X and whose Lebesgue area L2{f) equals the 
Dirichlet integral 

4 f \D1f{x)\* + \D*f{x)\H&X. 
2 «/ x-x 

These assumptions imply that 

I D1f(x) J - I D2f(x) I - {Jf(x)yi\ 

Dlf(x)*D2f(x) = 0 

for J(JL almost all x in X~X. Furthermore 

f S(ploRof,X,z)dJ&~ f J(ploRof)(x)(LO(x) 
J E2 J X-X 

for i ?£G n , and for each xÇzX — X such that Dif(x) and D<if(x) exist 
the Jacobian 

J(ploRof)(x) 

is continuous with respect to R and does not exceed Jf{x). 
Now (6) follows immediately. 
In order to prove (3) we define 

P = ( X - X)C\ {x\jf(x) > 0 } 

and infer that the following ten conditions are satisfied for <̂ 2 almost 
all points x of P : 

(i) mf(x)=[x}&Vtif-M}. 
(ii) l im r .o+ rC2[^(x, r ) - A , ( * , r(Jf(x))"*)]/(irr*)=Q. 
(iii) There is a continuously differentiate mapping g£C„(£2) and 

a compact set G such that limr^0+ ^[Kix, r)— G]/(wr2) = 0 and 

xEGC{z\ g(z) -ƒ(*), Dlg(z) = P # ) , P«g(«) -ZVO»)}. 

(iv) There is an RÇzGn such that 
2 

•ƒƒ(#) — ^ ( ^ ) = JH%)> where h — pno Rof. 

(v) l im r .0 + - G ( [ # o i ? o g ] [#(*, r)])/(irr») = /ƒ(*). 
(vi) l i m r . 0 + ^ ( M # ^ V ( x , f ( / / (*) ) l /« ) ] ) / ( i r r*)à / /W, 

where J f f = G n { ^ / A ( * ) > 0 } . 
(vii) limr.o+ -G(A [HnAf(xt r) ])/(irr«) è 1. 
(viii) J^{h[HC\Af{xy r)]-{z\M[h, Af(x, r), * ] ^ 1 } ) = 0 for r > 0 . 
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(ix) pn o R is a 1-fold essential projection for /a t {x}. 
(x) e2(f, {*})èi. 

Certain techniques developed in [R 2], [F l ] , and [W] are helpful in 
checking the statements (i), (ii), (iii), and (viii). 

We let 

Q = PC\ {x\ {x} G M/ - 'M/ and 6,(f, {x}) ^ l} 

and conclude with the aid of (i), (x), and [F 1, 3] that 

Hf[(Mf - M}) r\ {A | e,(f, A)£l}] 

£ A / K © ) ] è f ff(//, »/(Ç), y)d3cly 

= f ^ (ƒ. Q, y)dKny = f Jf{x)dJ&x 

J x-k 

PROOF OF (4) AND (5). We know from Theorem 6.7 that 

L*(f, A) è £**(ƒ, i4) à £,(ƒ, 4) for AGMf 

and infer with the help of Theorem 6.2 and (3) that 

= f: Hf[(Mf -M})n\A\ g2(/, A) è «'} J 
1=1 

PROOF OF (7). From (4), (5), and Theorem 6.6 we know that 

N(ploRolf, {A\E2(f,A) = l},«) £S(p*»oRof,X,z) 

for £ 2 almost all z in E2 whenever R€E.Gn. 
We define the functions u and » on Gn such that 

«(*) = f NiploRol,, {A | £2(/, 4) = 1}, î ) i ( > , 
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v(R) = f S(ploRof,X,z)dj& 

for RÇzGn, and shall complete the proof by showing that u and v 
are equal. 

The function v is continuous on Gn by virtue of (6). 
From (4), (5), and Theorem 6.9 we infer that each of the sets 

Yi= {y\N(lf, {A\ei(f,A) = l},y)^i} 

is a Hausdorff 2 rectifiable subset of E„. Since 

<R) = Z f N(pl o R, Yh z)d&z for R G Gn, 
i**l J Ei 

we conclude that the function u is continuous on Gw. 
Thus u and v are continuous functions on Gn such that 

u(R) è *>(#) for # G Gn 

and 

f u(R)d<t>nR » 0(**, 2). f ) #(F<) » j8(n, 2). £ 3CW
2(F,) 

= /8(», 2). f #(/,, {4 | e2(/, A) = 1 } , ^ ) ^ 

- j8(fif 2)-fl)1({il | 62(/, il) = 1}) = j8(«, 2).L2(/) 

- f v(R)d<t>nR. 

It follows that w = tf. 

PROOF OF (8). Let FOF2DF3D • • -be such open subsets of V*tf 

that 

at, - w = n ^ 

and let 

Vi = {x\mf(x) G F*} for t - 1, 2, 3, • • • , 

W'- {x\rnf(x)ew}, 0 = {A\e*(f,A) = 1}, 
g = pnORolf, k = ^n O R O ƒ, 

From (3), (4), and Theorem 6.6 as well as (7) and Theorem 8.14 
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we infer for «£2 almost all z in £2 that 

S(h,W',z) £N(g,QniW,z)t 

S(h,V'i,z) £N(g,QniVi,z), 

N(g, Q, z) = S(h, X, z) S S(h, W', z) + S(h, Vu z) 

for every positive integer i. For each such point z there exists a posi­
tive integer i such that 

N(g, Q r\ w, z) + N(g, Q r\ vit z) = N(g, e, *), 
whence it follows that 

S(k,W',z) = N(g,QriW,z). 

THEOREM 8.16. Suppose: 
(1) X is a locally compact, locally connected subset of E2for which 

a(X)>0. 
(2) fGCn(X) andn^3. 
(3) U is the union of all those open subsets V of 5W/ for which 

X2(/, {x\mf(x)ev}) < oo. 

(4) Q = Mfn{A\LS(f, A) = e*(f, A) = l}. 
Then : 

(5) If W is an open subset of U and RCzGn, then 

SÇploRof, {x\mf(x)eW},z) £ N(plo Rolf, Wr\Qt z) 

for «£2 almost all z in E2. 
(6) If W is an open subset of U, then the 2-dimensional integral-

geometric stable area of the mapping 

f\ {x\mf(x) GW} 

does not exceed 

Hf{WC\Q). 

(7) If W is an open subset of "Mf and RG.Gn, then 

S(pl o R o ƒ, {x | mf{x) G W), z) S Z L**(f> A) 

for 0(̂ 2 almost all z in E2. 
(8) If W is an open subset of 'M/, then the 2-dimensional integral-

geometric stable area of the mapping 
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fI {x\mf(x) G W} 
does not exceed 

f £ £*2(/, A)dfny. 
J En AGw,lfU)*=y 

PROOF OF (5). We choose e > 0 and define 

2 2 
g = pn O R O If, k = pn O R O ƒ. 

Furthermore we let F be the set of all ordered pairs 

such that V is an open subset of W, T is a two-cell contained in X, 
and 

{x\mf(x) G F } C Interior 7\ L2(/ | T) < oo. 

If (F , T)&F, then F is an open subset of 9tf(/in, 

{#!*%(#) G F } = {» | m(f{T)(x) G F } , 

L*(/M) = ^ ( / | r , i4 ) f o r ^ G F , 

62(fyA) = e 2 ( / | r f i l ) f o r ^ G F , 

5(A, {x\mf(x)GV}, z)=N(gy VC\Q, z) for £ 2 almost all 2 in E2, 

H / V H Ö) ^ X2(/, {x | **,(*) G F } ) < oo. 

Defining 

W' = U F 

we note that 

(IF H r H {4 | A* = 0 and 4 C Interior X)} C IF', 

whence, by Theorem 8.14, 

S(h, {x\mf(x) G W},z) = S(h, {x\mf(x) G W'}tz) 

for c(̂ 2 almost all z in £2 , because there are open subsets 
TFi, TF2, TTi, • • • of W such that 

IF = U Wi, 

X2(/, {*| *%(*) G IF,}) < co for i = 1, 2, 3, • • • . 
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Finally we choose pairs (Vi, 7\), (F2, T2), (Vz, T$)t • • • in F such 
that 

W' = Ü 7* 

#/(ö n Fm r\\)vAs a~\ 

It follows from the Theorems 8.14 and 8.15 that 
00 

S(h, {x\m,{x) G W), z) g £S(fc, {̂  | w/(«) G F,-}, z) 
t - i 

for 0̂ 2 almost all z in E2. 
However 

\ LtVj J / U y / J 

^Zf l / fon7wnÙF^ 

00 

and 

whenever 

1 G Ê 1 
Li?* ƒ J 

We conclude that 

.£({* I 5(A, {« I m/(*) G W}, t) > #(<?, QnW,z)})ge. 

PROOF OF (6). We define 

Yi = Enl~\ [y\ N(lf, Wr\Q, y) £ i} for i - 1, 2, 3, 

and compute: 



374 HERBERT FEDERER [May 

Hf(Wr\Ç)è f N(!f, WT\Q, y)d5cly 
JEn 

= Z ScliYi) è Z ?n(Yi) 

= Ê 0(». 2)-1 f f N(pl o X, F,, z)dJ&d4>nR 

= /S(», 2)-i f f f iV(^ o R, Yi, z)d&zd<j>nR 

= fi(n, 2)-i f f #( /„ o iï o If, W Pi Q, z)d&zd<t>nR 

^ j8(n, 2)-1 f f 5(/„ o J? o ƒ, {* | »,(*) G W}, z)djÇjsd<t>nR, 
J an J Ei 

PROOF OF (7). For Î G £ 2 we define 

* « - 2 E £*(ƒ, 4) 

and observe that 

£*(ƒ, ,4) = ooiorAEW - U, 

g(z) = oo for z G (*! o R o /,)(ÏP - 17). 

On the other hand if 

s G £ 2 - (ploRolfXW- U), 

S (pi oRof, {x\ mf(x) G W], z) 

= S{ploRof, {x\mf(x) E Ur\W},z), 

and by (5) and Theorem 6.7 the second member of this equation is 
for *£2 almost all such z less than or equal to 

N(ploRolf, UC\Wr\Q,z) S g(s). 

PROOF OF (8). From (7) we infer that 

0(». 2)-1 f f S(pl o R o ƒ, {x J !»,(*) G W}, z)d&zd<}>nR 
J On J ®2 

^ jS(nf 2)~* f f £ L*2(/, A)d&zd<l>nR 
J Gn J E3 A€ZW, (pn o JB o ^ ) (A)«=« 
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= j8(», 2)~i f f 2 Y, Z £*2(/, A)dJ^zd<t>nR 

REMARK. / # case n = 3 we can add the following three statements to 
the conclusions of Theorem 8.16: 

(9) Lt(f, A) = L*2(/, A) = 62(/, 4 ) = 0 or 1 /or H 2 ö feö^ a// 4 *n U. 
(10) !£(ƒ, ^4) = Z*2(/, -4) = 0 or 1 ^ oo /or iJ,2 almost all A in Mf. 
(11) If W is an open subset of VXtf, then 

Z LÎ(f, A)- £ £„(ƒ, ^) 

is a non-negative integer or oo for 3C2 almost all y in E3. 
We observe that (9) implies (10) because 

Z*2(/, -4) = oo for A G 2W) - Z7, 

and that (10) implies (11) because // maps sets of Hf measure zero 
onto sets of 3C2 measure zero. 

In order to prove (9) it is sufficient to consider an open subset V 
of M/ for which 

X2(/, {x\mf(x) ev}) < oo 

and to show that 

Z,* (ƒ, A) = 0 for H) almost all A in V - Q. 

Suppose €>0 . Since 

H2
f(Vr\Q) ^X 2 ( / , {x\mf(x)ev}) < oo, 

we can select an open subset W of V such that 

V - Q C W, Hf(W n Ö) < e. 

Letting 

IF' = {x\mf{x) G ïT} f 

we infer from (6) that 

\2(pto R o ƒ, W') < € for £ G G8. 

Choosing R\ R2, i?3GG3 so that 
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R}(x) = x, R2(x) = (x2l #3, #i), Rz(x) = (#3, xu X2) 

whenever x = (xi, #2, #3) G-E3, we find that 

3 

X2(/, W) £ Z MPZ O Rl O ƒ, W") < 3e. 

This conclusion can be justified by extending the fundamental in­
equality of Cesari [CE 2] from mappings of two-cells to mappings 
of arbitrary finitely triangulable subsets of E2 into £3. This extension 
presents no great difficulty. 

I t follows from Theorem 6.2 that 

f £*(ƒ, A)dH/A S f L*2(f, A)dHfA ^ X2(/, W') < 3e. 

The arbitrary nature of e implies that 

x lX(f, A)dHfA = 0, 
r-Q 

£*(ƒ, A) = 0 for H) almost all A in V - Q. 

THEOREM 8.17. If X is a 2-cell andfGCt(X), then 

I*(f) - jM/
L*(f' A^m*A " fMf

L*M> A^dH'A 

= f E iÏCMïróy = f Z £**(ƒ, ̂ )<&y. 
^ ^ t t lf(A)~y J En l/(A)**y lfU)~ 

PROOF. By virtue of Theorem 6.2 each of the above seven numbers 
is less than or equal to L2(f) and greater than or equal to the last 
integral. Furthermore Theorem 8.16 implies that the last integral 
is greater than or equal to the 2-dimensional integralgeometric stable 
area of/, which equals L2(f). 
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