
ON THE EXISTENCE OF PLANE CURVES WITH 
PRESCRIBED SINGULARITIES 

GERALD B. HUFF 

1. Introduction. I t is the purpose of this lecture to present three 
problems on the existence of plane curves with prescribed singularities 
and to give some indication of the present state of these questions. 
The geometry is the classical algebraic geometry of the plane over 
the field of complex numbers. 

If n, m, 5, K, and i are the order, class, number of double points, 
number of cusps, and numbers of inflections of an irreducible plane 
curve ƒ = 0 , these numbers are Pluecker characteristics of/ = 0, and 
satisfy Pluecker's equations: 

m = n(n — 1) — 2d — 3K. 

(P) 
i = 3n(n - 2) - « - 8K. 

I t is natural to raise the question: 
I. Given a solution of (P) in non-negative integers, does there exist 

an irreducible plane curve for which these integers are the Pluecker char-
acteristics? 

A solution of (P) with this geometrical interpretation will be said 
to be proper. 

The second question arises in the theory of linear systems of plane 
curves. A linear system 2 is given by 

Ao/o + Xi/i + ' • ' + V<* = 0, 

where the X's are parameters and /0 , / i , • • • , fd are ternary forms of 
order x0. If /o, jfi, • • • , fd are linearly independent, then d is the 
dimension of the linear system 2 . If Pi is a point such that all the 
curves of 2 are on Pit then Pi is a base point of 2 . If the general 
curve of 2 has multiplicity Xi a t Pt-, then 2 is said to have multiplicity 
Xi a t Pi. Let Pi , P2 , • • • , Pp be base points of S with multiplicities 
Xi, x2, • • • , xp. If S contains all curves of order x0 with these multi
plicities at these points, then S is said to be complete (with respect to 
these multiplicities at these base points). If the linear conditions 
imposed by asking that a curve of order Xo have these multiplicities 
a t these points are independent, then S is said to be regular (with 
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respect to these multiplicities at these points). The set of non-nega
tive whole numbers {xo; Xi, #2, • • • , xp} is called the characteristic 
x of S. If the general curve of the system 2) is irreducible and is of 
genus p, then the system is of genus p. If x is the characteristic of a 
complete and regular linear system of dimension d and genus p, and 
for which the general curve is irreducible and has no singularities ex
cept those prescribed at the base points, then these integers satisfy 
Cremona's equations [5, 3 ] : 1 

2 2 2 2 

#0 ~" #1 ~~ #2 — * ' * ~ Xp = d + p — 1, 
x^-v 

3#o — #i — #2 — • • • — Xp = d — ƒ> + 1. 

(If d > 0 , the assumption that the general curve of 2 is irreducible im
plies that 2 has no singularities except at the base points.) I t is cus
tomary to call any set of integers, x= {x0; Xi, x2, • • • , xp}f a char-
acteristicy whether or not it arises from a complete and regular linear 
system. Our second question may be phrased as follows: 

II . If x= {x0; Xiy #2, • • * , Xp} is a characteristic composed of non-
negative integers which determine non-negative p and d in (C), does 
there necessarily exist a linear système f or which x is the characteristic! 

A characteristic x which is associated with a linear system in this 
way is said to be proper (or geometric). 

Cremona and his followers were interested in this question in the 
case p = 0 and d = 2. The interest in these linear systems—homaloidal 
nets—arises from the following fact. If a homaloidal net in a plane 
II is put into projective correspondence with the (homaloidal) net of 
lines in a plane II ' , there is induced a point transformation between 
the planes which is birational and single-valued both ways with the 
exception of a finite number of points in each plane. Under this 
Cremona transformation a linear system 2 with characteristic x at p 
general points Fi, F2, • • • , Fp has an image 2 ' with characteristic x' 
at a congruent [l ] set of points in IF. In fact, x' is the image of x under 
a linear substitution with integer coefficients: 

Xo = nxo — siXi — . . . — SpXp, 

S: Xi = riXo — auXi — • • • — aipxp, 
; 

Xp — rp%Q a\pX\ * * • (ippXp, 

Here {n; Si, • • • , sp} is the characteristic of the homaloidal net 
which determines the transformation. The integers n, s^ rj> aij are 

1 Numbers in brackets refer to the references at the end of the paper. 
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non-negative and the forms Q = X2Q—X\ — X\ — • • • — x2
p and L = 3xo 

— #1 — x2 — • • • ~ xP are invariant under S. The form of the last 
question is now clear. 

III. If S is a linear substitution of the form above in which the letters 
are non-negative integers and which leaves Q and L invariant, is this S 
necessarily associated with a planar Cremona transformation in the way 
described above? 

A linear substitution S which is asociated with a Cremona trans
formation is said to be geometric. 

I t is known tha t the answer to all of these questions is no. For each 
question, our procedure will be to give a simple example to show 
that the answer is in the negative and to examine modifications of 
the question suggested by the example. 

2. Improper solutions of Pluecker's equations. In Salmon-Fiedler 
[18], mention is made of a curve with w = 7, S = 0, and K = 1 3 , which 
makes m = 3 and i=l in the equations (P). Recall now that the 
Pluecker characteristics of a curve also satisfy the dual equations: 

n = mim — 1) — 2t — 3i, 
(P*) 

K = 3m(m — 2) — 6t — 8iy 

where t designates the number of bitangents and the remaining letters 
have the meaning described above. Substituting the numbers above 
into the first of these dual equations, we see that (P*) yields / = — 2 
and we conclude that there is no curve of order 7 with no double 
points and thirteen cusps. 

While it is necessary to require that all the values of n, m, S, /c, i, t 
must be non-negative to insure the existence of a curve for which any 
subset are Pluecker characteristics, it is still easy to construct an 
example showing tha t this is also not sufficient. A simple example is 
w = ra = 4, 5 = / = 4, and K = i = 0. When an irreducible curve does exist, 
its genus p is given by 

p = (n - l)(n - 2)/2 - Ô - K. 

Thus we are led to a modification of the original equation which has 
received considerable attention. 

Ia. Given a solution of (P) and (P*) in non-negative integers such 
that p~(n — l)(n — 2)/2 — ô — K is also non-negative, does there exist an 
irreducible plane curve for which these integers are the Pluecker char
acteristics? 

In his well-known article on the principle of projection and section, 
Veronese [20] showed that the answer to Ia is yes for p = 0. Later, 
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Lefschetz, in a much quoted paper [15], showed that the answer to 
Ia is in the affirmative for £ = 0, 1, and 2. He further showed that 
the same would be true for p~3 if it were possible to construct a 
curve for w = 7, 8 = 1, and K = 1 1 . In 1931, while studying problems 
about algebraic surfaces [21 ], Zariski obtained a curious theorem 
about the cusps of a plane curve. Let a plane curve of order n have 
cusps and let j be an integer such that 6j<n. The theorem asserts 
that the linear system of curves of order n — 3~j with simple points 
a t the cusps is a regular linear system. Now suppose that a curve of 
order 7 with 11 cusps can exist. I t then follows that there exists a 
regular linear system of cubics on eleven points and this makes the 
dimension — 2! This theorem thus shows that even the modified 
question Ia must also be answered in the negative. 

Lefschetz and Zariski made use of the fact that if n, p, K are 
given, then the remaining characteristics are determined as integers. 
They studied the arithmetic conditions imposed on n, p, and K by 
the fact tha t these remaining integers must not be negative in a 
proper solution. Finally, Zariski [22 ] gave a set of inequalities satis
fied by n, p, and K which were necessary and sufficient conditions 
that the remaining integers be non-negative. To these he adjoined 
one more inequality which insures that the solution corresponding 
to n, p, K cannot be shown to be improper by his theorem. The final 
form of the first question may be put as follows: 

Iz. Is there an irreducible plane curve corresponding to every n, p, K 
which satisfies the Zariski inequalities? 

This is a t present an open question. 

3. Improper solutions of Cremona's equations. Even in the clas
sical case, p = 0, d = 2 studied by Cremona and his followers [5 ; 12 ; 14], 
there are non-negative solutions of equations (C) which are not asso
ciated with homaloidal nets. I t is customary here to refer to the fact 
that Ruffini [ l7] erroneously gave {10; 6, 4, 35, l2} as the character
istic of a homaloidal net. For our purposes we shall consider the 
simplest nongeometric solution, 

(0) * » {5; 3, 3, 1,1, 1,1, 1,1}. 

To see that no homaloidal net corresponds to this solution we may 
reason as follows. If there were a homaloidal net of this description, it 
would determine a linear substitution 5 with {S ;3 ,3 , 1, 1,1, 1, 1, l } 
in the first row and with Q, L as invariants. Now one may make a 
diophantine argument to show that the remaining coefficients can 
not all be integers. This shows that {5; 3, 3, 1, 1, 1, 1, 1, 1} is non-
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geometric and suggests also the following modification of question II 
for p = 0, d = 2. 

lia. Is there a homaloidal net associated with every solution of 
(C) for p = 0, d~2 which appears in the first row of a linear sub-
situ tion 5 which has (?, L as invariants? This conjecture has been 
repeated in the literature [l ; 2] and is easily seen to be equivalent to 
the original question I I I . Although one may find incomplete argu
ments in the literature [4; 13] which claim to show that the answer is 
in the affirmative, we shall see in a moment that it is easy to con
struct an example showing that the answer is no. 

I t should first be pointed out that there is a simpler way of show
ing that { S ; 3 , 3 , 1, 1, 1, 1, 1, l } is not a geometric solution of equa
tions (C). If there were indeed a linear system of quintics with an 
irreducible general curve, then the line through the two triple base 
points would meet this curve in a t least six points and this asserts 
that the curve is reducible. This shows completely that the example 
is not geometric and suggests a further necessary condition for proper 
solution. If x is proper and c is the characteristic of a curve of Co <#o, 
then 

(L) co#o — Ci%i — C2X2 — . • • — cpXp è 0. 

In an hour address to the society over a quarter of a century ago, 
Coble [2] suggested that any solution of (C) for p = 0, d — 2 which 
also satisfied all possible inequalities of the form (L) must then be 
proper. Here we shall modify our second question to: 

lib. Is there a linear system with irreducible general curve associated 
with every solution of equations (C) which also satisfy inequalities (L)? 

4. The invariant theory of Cremona's equations. There does exist 
a reasonably simple theory of characteristics which permits a system
atic attack on these problems. If, for a fixed p, S and S* are two 
integer substitutions which are geometric, then it may be shown that 
SS* is also geometric. This is the decisive step in showing that the 
collection of all geometric 5 for a given p form a group, which we 
shall designate by Gp. 

Associated with a quadratic transformation there is the substitu
tion : 

^123: %% = %i + ai(aoXo — öiffi — . . . — apxp)t i = 0, 1, • • • , p, 

where a is the vector { l ; 1, 1, 1, 0, • • • , 0 } . For any p ^ 3 , Am£:Gfi. 
I t is further true that any substitution which represents a permuta
tion of Xi, x2, • • • , xp is in Gp [2]. We shall designate the group gen-
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erated by Am and the permutations by (Am, permutations). I t is 
certainly a subgroup of G> 

If T is a linear substitution which leaves Q unchanged, then it 
follows—exactly as for orthogonal substitutions—that the determi
nant of T is ± 1 . Thus the set of all linear substitutions with integer 
coefficients and with Q and L as invariants must be a group, which 
we shall call GP(I). The set of those elements of GP(I) which have 
n, Si, rj, dij non-negative in the form (5) form a complex of GP(I) 
which will be designated by HP(I+). I t is clear from these definitions 
tha t 

04 m, permutations) QGPQ HP(I+) QGP(I). 

Several of the significant results in this connection can now be 
stated in terms of whether or not these inclusions are proper inclu
sions. 

For p ^ 8 , these sets are all finite and are all the same. Du Val has 
studied the groups in detail [6] and has identified them with certain 
crystallographic groups. For p = 9, the sets are all infinite, but even 
here, all these sets are the same [19]. Notice that our original ques
tion I I I , in this notation, becomes: Is Gp — Hp(I

+)t For p ^ 9 , questions 
III and I I a must be answered in the affirmative. 

For p > 9 , the situation is different. We should first mention that 
in a celebrated paper [ ló] M. Noether showed that 

(1) For all p, (-4m, permutations) = G>. That is, Gp is generated by 
A123 and the permutations of 

(Actually, Noether announced a more general result a t that time, 
although this is exactly what his argument demonstrated.) In 1934 
Coble constructed an example, for p = 10, of an element of GP(I) 
not in HP{I+) [3]: 

(2) Forp^lO, JTp(jr+))CGp(J). ^ 
Much earlier, S. Kantor, in his prize memoir crowned by the 

Naples Academy [13; 4] , had claimed that GP=HP(I+) and had 
supported the assertion by an argument containing an incomplete 
induction. If we pause here to see how Coble constructed his ex
ample to prove (2), it will be clear that the faulty argument gave an 
incorrect answer. Coble thought of Q = 0 and L = 0 as quadric and 
hyperplane in a projective space of p dimensions and reasoned that 
the harmonic perspectivity in L = 0 and its pole would leave these 
invariant. He found that these could be written with integer coeffi
cients for p = 7, 8, 10, and 11. The substitution for p = 10 was Coble's 
example. By similar geometric reasoning it may be shown that if 
a = {a0; #i, • • • , ap} is an integer point in L = 0, and such that 
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(Zo — a\ — • • • — a2
p = — 2, then the linear substitution of the form of 

A123 for this a has Q and L as invariants. Three more ones adjoined to 
the counter example (0) gives a = {S; 3, 3, 1, 1, 1, 1, 1, 1, 1 ,1 ,1} as 
an a satisfying these conditions and an element of Hu(I+)t which is 
obviously not in Gn [7 ] : 

(3) For p e l l » GpCHp(I+), and the answer to question III is in the 
negative. 

A study of the invariants of Gp is the setting in which we shall con
sider the remaining question lib. I t is an almost direct consequence of 
the definition tha t : 

(4) If x is a proper characteristic and gGG>, then x' ~gx is also 
proper. Properness is an invariant of Gp. 

This is true only if one adopts the rather curious convention that 
{0; — 1 , 0, • • • , 0} is a proper characteristic for p = d = 0, and is 
a consequence of the fact that this is the image of the proper char
acteristic { l ; 0, 1, 1, 0, • • • , 0} under ^123. Even with this excep
tional proper characteristic, x0, p, and d are non-negative for all 
proper characteristics. Let Ap be the set of all characteristics such that 
xo, p, and d are non-negative. Then by using the fact (1) that the 
generators of Gp are known, it may be shown that [8]: 

(5) If xÇîAp and gEGP , then x'~gx is in Ap. The property of being 
in Ap is an invariant of Gp. 

I t is not known if the inequalities (L) are invariant under Gpt but 
the following is a result of this sort. Let Ep be the set of proper solu
tions of (C) for p = d = 0. Then if x is a proper solution of (C), e(EEp 

and eo<Xo, & follows as before tha t : 

(PI) e0x0 — exXi — • • • — epxp ^ 0, e £ Fp and e0 < Xo. 

These are called the properness inequalities. I t may be shown that [9] : 
(6) If xÇ:A satisfies (PI) and gEG>, then x' = gx also satisfies (PI) . 

Satisfaction of the properness inequalities is an invariant of Gp. 
Now let xE:A and let Gp(x) be the set of images of x under Gp. 

In accordance with (5), if yG.Gp(x), then yoâO, and there is an ele
ment x* in G{x) such that x* is of minimal order; that is, XQ is a 
minimum. The result we need here is that [lO] 

(7) A characteristic x is of minimal order if and only if XQ — Xi — Xj 
— Xk^O, where xit Xj, Xk are three of the largest among Xi, • • • , xp. 

We may now ask if all solutions of (C) and (PI) are indeed proper. 
If x is a solution of (C) and (PI), then Gp(x) contains a minimal 
order element x* satisfying (C) and (PI) and the condition of (7). 
Since properness is an invariant, x is proper if and only if x* is. But it 
is possible to tabulate all solutions of (C), (PI), and (7) for p~0 and 
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1. This leads to the conclusion [lO]: 
(8) For p = 0 and any d, all solutions of (C) and (PI) are proper. 

For p = l and d positive, all solutions of (C) and (PI) are proper. 
For p~l and d = 0, any solution of (C) and (PI) of g.c.d. = 1 is proper. 

Since for any x, the inequalities (PI) are included among the in
equalities (L), this means that Coble's conjecture is settled: any 
characteristic x which gives p — 0 and d = 2 in (C) and also satisfies 
the inequalities (L) must be proper. I t also gives the answer to the 
more general question lib for p — 0 and 1. For arbitrary values of p, 
l ib remains an open question. 

On the other hand, the problem of giving an arithmetic description 
of geometric linear substitutions may be regarded as settled. The 
result (S) states that a geometric substitution 5 must send elements 
of Ap into elements of Ap. I t may be shown that (8) implies that this 
is also sufficient [ l l ] : 

(9) A linear substitution with integer coefficients which leaves Q and 
L invariant and sends elements of Ap into elements of Ap must be 
geometric. 

I t should be stated at this point that in restricting our attention 
to regular linear systems, we have neglected substantial results of 
J. A. Todd, Nollet, and Jongmans on the existence of linear systems 
with base points in special position. We close by listing several prob
lems suggested by the ideas we have considered. Is there an appro
priate group associated with Pluecker's equations which will permit 
arguments like those made for Cremona's equations? Are there results 
like (8) for any values of p and dl What is the most general abstract 
setting in which these methods have application? 
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