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I. INTRODUCTION 

1. Background. The subject of this address is a branch of mathe­
matics which may be regarded as a combination of the classical 
theory of representations of finite groups by matrices and that part of 
analysis centering around the theory of Fourier series and integrals. 
The connection between these two apparently diverse subjects arises 
simply enough from the fact that the real numbers and the real 
numbers modulo 27T form groups under addition. 

In one form of the theory of representations of a finite group G a 
central role is played by the so-called group ring or group algebra. 
This is usually defined as the set of all formal linear combinations of 
group elements C1S1+C2S2+ • • • +cnsn, where each S;£G and each d 
is a complex number. Two such expressions are added in the obvious 
manner and are multiplied by writing down the formal product and 
simplifying by means of the distributive law and the given multiplica­
tion of group elements. I t may also be defined (and this is the defini­
tion we shall use) as the vector space of all complex-valued functions 
on G with multiplication defined by the formula 

(f*g)(s) = T,f(st-1)g(t). 
tGG 

If we regard C1S1 + C2S2+ * * * +cnsn as the function whose value at Si 
is d, it is not difficult to see that these two definitions amount to the 
same thing. A basic result in the theory of group representations as­
serts that the group algebra is a direct sum of minimal two-sided 
ideals. Now it is easy to see that a linear subspace M of the group 
algebra is a left (right) ideal if and only if it is closed with respect to 
left (right) translation; that is, if and only if ƒ G M implies that af(fa) 
is in M for all a in G where af(s) =f(as) and fa(s) =f(sa). Thus every 
function on G is uniquely expressible as a sum of functions each of 
which has the property that its right and left translates generate a 
linear subspace which is minimal with respect to translation invari­
ance. 

An address delivered before the Philadelphia meeting of the Society on April 29, 
1949, by invitation of the Committee to Select Hour Speakers for Eastern Sectional 
Meetings; received by the editors October 3, 1949. 

1 The author is a fellow of the John Simon Guggenheim Memorial Foundation. 
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On the other hand, Fourier's theorem asserts that every member of 
a large class of functions on the line with period 2w (that is, func­
tions on the group of the reals modulo 2ir) may be written in the 
form 

00 

]T} cn exp (inx) 
n——oo 

where the cn are complex numbers, n is an integer, and i2 = — 1. Here 
the functions exp (inx) generate one-dimensional and hence minimal 
subspaces which are certainly translation invariant. 

The analogy is clear. In each case there is a theorem asserting 
that a fairly general function on a group is a sum of functions having 
especially simple translation properties. I t is natural to seek general 
theorems about the translation properties of functions on groups 
which include these as special cases. In this address I shall describe 
some of the work that has been done in this direction in the last 
twenty years or so and indicate its connections with other branches 
of mathematics. 

There will be no at tempt at completeness of coverage except from 
the special point of view here adopted. Many topics more or less 
closely related will not be discussed at all. In particular the em­
phasis will be on theorems valid for quite general groups and on the 
papers in the literature where these theorems are established in gen­
eral. Thus in spite of his pioneering work in the harmonic analysis of 
functions on the line, there will be little mention of the name of 
Norbert Wiener. 

In gathering this material together I have benefited greatly from 
conversations with I. Kaplansky, L. H. Loomis, F. I. Mautner, 
and I. E. Segal, and I wish to take this opportunity to acknowledge 
my indebtedness to them. 

2. Preliminaries. In the theory of Fourier series and integrals the 
topology of the underlying group plays a role. Accordingly it is 
natural to consider topological groups; that is, groups which are at 
the same time topological spaces in such a manner that the group 
operations are continuous. Since every group is a topological group 
with respect to the topology under which every set is closed, discrete 
and in particular finite groups are not excluded. Among topological 
groups, those admitting a compact neighborhood of the identity, the 
so-called locally compact groups, present themselves as especially 
suitable for study. According to a refinement of an important 
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theorem of A. Haar [34],2 every such group3 admits an essentially 
unique Borel measure4 which is invariant under right (left) transla­
tion. When G is the real line, this measure reduces to ordinary 
Lebesgue measure. In the general case its existence makes it possible 
to extend most of the methods, notions, and results of the theory of 
Lebesgue integration to the study of functions on arbitrary locally 
compact groups. In particular one may speak of the class </^(G) of 
functions summable on the group of the class ^Q(G) of functions of 
summable square, of the integral ff(x)dx of a function in JQ(G)> and 
so on. 

I t is only when G is finite that a satisfactory theory of the set of 
all functions on G can be given. In general it seems to be necessary to 
restrict attention to a large but not all inclusive subfamily. This 
family is usually taken to be the set of all functions on the group 
having some simple topological or measure theoretic property. It is 
ordinarily linear and translation invariant and provided with a nat­
ural topology. The problem5 is then to give as complete an analysis 
as possible of the structure of the set of closed translation invariant 
linear subspaces. Of the families of functions one might consider, 
two have properties which make them especially suitable for such a 
study and have received a great deal of attention. These are the two 
measure theoretically defined families mentioned in the preceding 
paragraph, JQ(G) and JÇJ(G). The first may be made into an algebra 
which is a generalization of the group algebra of a finite group, multi­
plication being defined by the formula 

f*g(s) = ƒ* f{st-l)g(t)dt 

where integration is with respect to right invariant Haar measure. 
Whenever ƒ and g are in j£}(G), the right-hand side exists for almost 
all 5 and defines a function in JQ(G). I t is not difficult to show that a 
linear subspace of JQ(G) closed in the usual norm is right (left) in­
variant under translation if and only if it is a right (left) ideal in the 
group algebra. In this case then the general problem becomes that of 

2 Numbers in brackets refer to the bibliography a t the end of the paper. 
3 Haar considered only separable groups and did not prove uniqueness. Unique­

ness was first proved by von Neumann [55] and the extension to the nonseparable 
case was first carried out by Weil [77]. Cf. also von Neumann [56] and Kakutani 
[38]. 

4 In the terminology of Halmos [36]. 
6 Cf. [66, p. 865]. 
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studying the ideal theory of a certain Banach algebra. JÇJ(G) on the 
other hand, while not in general an algebra, is a Hubert space and 
possesses the especially simple structure of such spaces. In particu­
lar the possibility of taking orthogonal complements makes its par­
ticularly suitable for direct sum-like decompositions. 

II . COMPACT GROUPS 

3. Two-sided invariant subspaces and the Peter-Weyl theorem. 
When the group in question is not only locally compact but compact, 
a rather complete extension of the theory for finite groups may be 
given. This theory was first developed by F. Peter and H. Weyl 
[60] in 1927. These authors restricted themselves to Lie groups, but 
only because the general measure of Haar, which incidentally for 
compact groups is always both left and right invariant, was not then 
available. Their theory goes over to the general case without change.6 

The fundamental result of this theory—the celebrated Peter-Weyl 
theorem—may be stated in the following form7: JJ(G) is the direct 
sum of finite-dimensional minimal two-sided invariant subspaces 3«. 
Each consists entirely of continuous functions. Every continuous 
function on G is a uniform limit of finite sums of functions from the 
3a . The theory of the closed two-sided invariant subspaces of JQ(G) 
now follows at once. Every such subspace is the direct sum of the 
3</s which it contains and every family of 3a's defines a unique such 
subspace. In particular there is a natural inclusion preserving cor­
respondence between the subfamilies of the family of all 3«'s and the 
closed two-sided invariant subspaces of J(J(G). The theory of J^(G) 
is hardly less simple. Each 3 a is a minimal two-sided ideal and every 
closed two-sided ideal is the closed linear span of the 3a's which it 
contains. For compact groups there is a natural one-to-one cor­
respondence between the closed invariant subspaces of JQ(G) on the 
one hand and those oîjQ(G) on the other. 

4. One-sided invariant subspaces and representations. Every 
closed right invariant subspace R oijQ(G) or JQ(G) is the closed linear 
span of the set of intersections i?n3«. Thus the analysis of the right 
invariant subspaces of J(J(G) or JQ(G) reduces to that of the 3a . Now 
it is a well known theorem of Wedderburn that each 3a , being simple 
as an algebra, is isomorphic to the algebra of all linear transforma­
tions of an w-dimensional vector space into itself. Here n — na is a 

6 As far as separable groups are concerned this was pointed out by Haar himself 
as a corollary to the existence of his measure. 

7 Cf. Köthe [42]. 
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positive integer depending on a. I t follows that each 3 a is a (non-
unique) direct sum of na minimal right invariant subspaces and that 
the family of all right invariant subspaces of 5« is order isomorphic 
to the family of all subspaces of an ^«-dimensional vector space. 

The finite-dimensional right invariant subspaces of JÇJ{G) fur­
nish examples of what are called representations of G, that is, con­
tinuous homomorphisms of G into the group of unitary transforma­
tions of a finite-dimensional Hubert space into itself. Indeed if M is 
such a subspace,/£Af, aÇ_G, and Ua(f) =fa where/0(x) =/(xa) , then 
Ua is unitary and the map a-*Ua is a representation of G. The close 
and important connection between the theory of the representations 
of G and the foregoing may be described briefly as follows. If M(1) and 
M{2) are minimal right invariant subspaces of the same 3 a , then the 
associated unitary representations U(1) and C/(2) are unitary equiva­
lent in the sense that there exists a unitary map V of M(1) on M(2) 

such that VUJpV"1 — U® for all a £ G . Moreover any unitary repre­
sentation a—>Ua of G which is irreducible in the sense that there is 
no subspace invariant under all Ua is unitary equivalent to the repre­
sentations associated with one and only of the 5«. If <£i, $2, • • • is a 
basis in the space in which the Ua act, then the "matrix elements" 
(Ua4>i> 4>j) are continuous complex-valued functions defined on G. 
Their linear span is independent of the basis and in fact coincides 
with 3«. I t follows that the matrix elements of the irreducible repre­
sentations of G are dense in o£2(G), and it is in this form that the 
Peter-Weyl theorem is often quoted. 

Since *£2(G) is the direct sum of the 3tt, each /G^ 2 (G) is of the form 
f — ̂ 2afa where / a £ 3 a . If we use representations, a compact and 
suggestive formula for fa may be obtained. If U? is defined for each 
a and each /G»C2(G) by the formula 

U"= f Uhf(x)dx 

where U" is associated with 3 a , then 

fa = na Trace [Ux U/]. 

This last equality implies and is implied by the equality 

f I f(x) \Hx = Y,na Trace [ü/(Uf)*]t 
J a 

which may be regarded as a generalization of Parsevars equation in 
the theory of Fourier series. 
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5. Almost periodic functions. Bochner's reformulation [4] of Bohr's 
definition of almost periodic functions on the line makes sense for 
arbitrary groups. For compact groups all the continuous functions 
turn out to be almost periodic. J. von Neumann in a celebrated paper 
[54] showed that the Peter-Weyl theory for continuous functions 
on a compact group could be obtained as a special case of an an­
alogous theory of continuous almost periodic functions on an arbi­
trary topological group.8 When the group is the real line this theory 
reduces to that of Bohr. A central tool is a mean value defined for 
each almost periodic function and taking the place of the Haar inte­
gral. The main result asserts that the almost periodic functions on a 
group are related to the minimal finite-dimensional invariant sub-
spaces of continuous functions and hence to the representations of 
the group just as are the continuous functions on a compact group. 
Later A. Weil9 [76; 78] showed that the theory of von Neumann 
could be deduced from the Peter-Weyl theory. More precisely he 
showed that for an arbitrary topological group G there exists a con­
tinuous homomorphism <j> of G onto a dense subgroup of a certain 
compact group K with the property that a function ƒ on G is almost 
periodic if and only if there exists a continuous g on K such that 

I I I . ABELIAN GROUPS 

6. Duality and the Plancherel theorem. The theory of compact 
groups assumes an especially simple form when the group G is 
Abelian as well as compact. The irreducible representations are all 
one-dimensional and so are simply continuous homomorphisms of G 
into the group of complex numbers of modulus one, that is, char­
acters of G. The minimal invariant subspace 3« of J^(G) associated 
with the representation defined by the character ya is simply the one-
dimensional subspace of all complex multiples of ya- Thus the expan­
sion formula becomes/(x) = ^2cyy(x) where cy—ff(x)y(x)dx and the 
summation is over all characters y. Convergence is of course in the 
sense of the J(J(G) norm, that is, "in the mean." 

It was apparently first noticed by A. Weil [78] that these formulae 
could be given a much more symmetric form and generalized to arbi­
trary locally compact Abelian groups by making use of the Pontrja-
gin-van Kampen duality theory [62; 63; 39] for such groups. If G is 
locally compact and Abelian, then the set G^ of all characters on G 
is itself an Abelian group under ordinary pointwise multiplication. 

8 Cf. alsoWeyl [79]. 
9 Cf. also Freudenthal [9], van Kampen [40 ], Pontrjagin [61 ] and Tannaka [74]. 
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Moreover it is locally compact in a certain natural topology. Now if 
yÇ_G^ and x £ G , then for fixed xf y(x) looked at as a function of y is a 
character of G^\ The principal theorem of the Pontrj agin-van 
Kampen theory asserts that every character of G^ is uniquely ob­
tainable in this way from an element of G and that the topology of 
G regarded as G~"^ is the same as the given topology of G. Thus 
there is a natural pairing of locally compact Abelian groups such 
that each member of a pair is the character group of the other. 
Because of the symmetry of the relationship between G and G^ it 
is customary to write (x, y) instead of y(x). The resulting function 
of two variables is sometimes called the character function. If G is 
the additive group of the real line, G^ is also isomorphic to the addi­
tive group of the real line and the character function may be taken 
to be such that (x, y) =exp (ixy). If G is the additive group of the 
reals modulo 2ir} then G is isomorphic to the additive group of the 
integers and (x, y) =exp (inx) where n is an integer. In general the 
character group of a compact group is discrete and that of a dis­
crete group compact. 

Let us return to the formulae f(x) = ^2ycyy(x) and cy=ff(x)y(x)dx. 
Setting cy ~f^(y) to emphasize the fact that the set of coefficients is a 
function on G^, we may rewrite these formulae in the form 

ƒ(*) = J f*(y)(x> y)dy and f^(y) = J ƒ(*)(*, y)dx 

where the integrals are taken with respect to the Haar measures in 
G and G^\ Indeed, since G^ is discrete, the Haar measure of a 
point may be taken to be one and summation over the group ele­
ments is the same as integrating over the group. In this form, how­
ever, the formulae are meaningful for arbitrary locally compact 
groups and A. Weil in [78] has established their validity for suitably 
restricted functions/ . In particular the jf^ for fÇzjÇ}(G)r\jQ(G) are 
dense in JQ(G^) and (for suitable choice of the Haar measure in G) 
f\f(x)\2dx = f\f~(y)\2dy for all such / . Thus the map ƒ—>/^ may be 
uniquely extended by continuity to give a natural norm preserv­
ing linear map of all of o£2(G) onto all of J(J(G^). This "Plancherel 
theorem" for locally compact Abelian groups reduces to the classical 
Plancherel theorem for Fourier transforms when G is taken to be the 
additive group of the real line and to the Parseval relation for 
Fourier series plus the Riesz-Fisher theorem when G is taken to be the 
real line modulo 2ir. For arbitrary locally compact Abelian groups 
the generalized Fourier transform ƒ—»/^ makes possible a quite satis­
factory solution of the invariant subspaces problem for ^ 2 (G) . In 



392 G. W. MACKEY [September 

fact it is not hard to show that the Fourier transform of a transla­
tion invariant closed subspace of *£2(G) is the set of all members of 
J(J(G^) which vanish (almost everywhere) outside of some measur­
able subset of G^ and conversely. Thus there is a one-to-one inclusion 
preserving correspondence between the closed invariant subspaces of 
JQ(G) and the measurable subsets mod null sets of G^. 

7. Normed rings and JQ(G). The generalized Fourier transform 
also arises naturally when Gelfand's theory of normed rings (Banach 
algebras) is applied to the algebra oAG obtained by adjoining a unit 
to the algebra JQ(G). For an arbitrary Banach algebra QA the Gel-
fand theory gives a canonical homomorphism ƒ—>f° where ƒ £eyf and 
jo =ƒ>(M) is a member of the ring of continuous complex-valued func­
tions defined on the compact space Vît of all maximal ideals in <iA. 
When <IA=ZAG, the maximal ideals other than JQ(G) itself are in one-
to-one correspondence with the characters of G in such a manner that 
for each ƒ & C ( G ) and each M^Vît- [jg(G)}, f(M) =ff(x)yM(x)dx 
where y M is the character corresponding to M. Thus functions on Vît 
may be identified with functions on G^ and the canonical mapping 
ƒ—>P reduces to the Fourier transform. The fact that /° = 0 implies 
that f° — 0 is equivalent to the fact that <tAG is semisimple. The 
Fourier transform from this point of view seems to have been intro­
duced independently by Gelfand and Raikov [20 ] on the one hand 
and I. E. Segal [68] on the other without knowledge of Weil's work. 
The application of the normed ring point of view to functions in 
JQ(G) and the proof of the Plancherel theorem seems to have been 
first carried out by M. Krein [43J. 

The invariant subspaces problem for JQ{G) is much more difficult 
than that for J(J(G) and so far is only very incompletely solved even 
when G is the real line. I t is natural in view of the JQ theory to at­
tempt to set up a correspondence between the closed ideals in j£}(G) 
and subsets of G"~\ Following Segal,10 who seems to have been the 
first to attack the problem for general groups [68; 69], let us define 
the hull of a closed ideal 3 in jQ(G) as the set &(3) of all characters 
which define maximal ideals containing 3. Let us define the kernel 
of a subset A of G ^ as the intersection k(A) of the maximal ideals 
defined by members of A. Then k{h (3)) the kernel of the hull of 3 
contains 3. If it were true that 3 = fe(Â(3)) fo*" all 3, then there would 
be a one-to-one inclusion inverting correspondence between the 
closed invariant subspaces of <Q{G) and the closed subsets of G and a 

10 Results similar to those of Segal have been obtained independently by Gode-
ment [26]. 
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satisfactory solution of the invariant subspaces problem would be at 
hand. Unfortunately L. Schwartz [67] has recently shown that this 
equality need not hold ; specifically whenever G is Euclidean n space 
with n^Z. I. E. Segal has shown on the other hand that it is always 
true that 3 is "approximately" equal to k(h{S)). More precisely if O 
is any open set containing h(3) ,then k(0)Q3. I t follows that when­
ever A(3) is empty, then 3 = &(&(3)). This result for the real line im­
plies Wiener's general Tauberian theorem and his theorem about 
spans of functions in JQ(G). In fact the nontrivial half of one form 
of the general Tauberian theorem (Theorem 4 of [80 ]) may be 
stated as follows. Let ƒ be a bounded measurable function on the line 
and let c be a complex number. Let 3 be the class of all functions K in 
£ ! ( - oo, oo) such thatlim^oo J,l(aK(x-y)f(y)dy = cj2aiK(x)dx. Then 
if 3 contains a function K\ whose Fourier transform never vanishes, 3 
must coincide with jQ( — °° , oo). Now it is routine to verify that 3 is 
a closed ideal. Moreover the fact that the Fourier transform of K\ 
never vanishes is equivalent to the fact that K\ is not contained in 
the maximal ideal defined by any character exp (ixy). This implies 
that the hull of 3 is empty and hence that k(h($)) —J^}{— °°, °°). In 
Segal's paper, which also contains the developments necessary to ob­
tain the other form of Wiener's theorem, this theorem is generalized 
in another direction : when G is the real line, then 3 = k(h(S)) whenever 
h{i) is the union of an open set and a closed set without limit points. 
I. Kaplansky [41 ] has recently extended this last result to a large 
class of locally compact Abelian groups and shown that for arbitrary 
locally compact Abelian groups 3 = fe(Â(3)) whenever A(3) has only a 
finite number of elements. 

8. The Laplace transform and connections with the theory of func­
tions of a complex variable. Further connections of the theory of 
locally compact Abelian groups with classical analysis appear when 
other invariant classes of functions on a group are considered. Spe­
cifically it is possible in a great variety of ways to choose a measure 
fi on G which is different from Haar measure but absolutely continu­
ous with respect to it in such a manner that ^ ( M » G) is closed with 
respect to convolution.11 The maximal ideals in the resulting Banach 
algebra are no longer in one-to-one correspondence with the char­
acters of G but with what may be called generalized characters, 
that is, continuous homomorphisms of G into the multiplicative group 
of all nonzero complex numbers. Moreover, for particular such 
Banach algebras not all generalized characters need appear. Every 

Convolution being denned as usual using Haar measure and not p. 
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generalized character is uniquely a product of an ordinary character 
and a function of the form exp (/) where I is real-valued and has the 
property that l(xy) =l(x) +l(y) for all x and y in G, that is, is a linear 
functional. If we let G denote the vector space of all continuous linear 
functionals on G, the maximal ideals of -(^(M» G) will be in one-to-one 
correspondence with the members of a subset of G^XG. I t can be 
shown that this subset is always of the form G^XK where K is a 
suitable convex subset of the vector space G. The canonical mapping 
taking each fÇ.jÇ}(p, G) into a function on the maximal ideals is then 
a mapping of functions on G into functions on G^XK. If/0 is the map 
of ƒ and y and / are members of G and k respectively, then 

(*) f \ y , i) = ƒ ƒ(*) (*, y) exp (i(x))dx. 

If G is the group of integers, then G^ is the group of complex 
numbers of unit modulus and G is a one-dimensional vector space. A 
convex subset of G is an interval so that the functions /° are defined 
on the direct product of a circle with an interval, that is, an annulus. 
I t is easy to see that the mapping from sequences to functions defined 
in an annulus thus obtained coincides with the corresponding map­
ping defined by the Laurent series. If G is the real line, then G^XK is 
a strip and ƒ—>/° is the two-sided Laplace transform. In the general 
case it is possible to introduce a notion of directional differentiation 
for functions defined on G^XK and a relationship between directions 
of differentiation which leads to a notion of analyticity for functions 
on G^XK. The generalized Laplace transforms, that is, the functions 
/° defined by (*), then turn out to be analytic functions on G^XK. 
In this way at least some of the main notions in the theory of func­
tions of a complex variable arise as special cases of more general 
notions occurring naturally in the theory of locally compact Abelian 
groups. One is led to conjecture that there will be general theorems 
about such groups which will unify and illuminate appropriate por­
tions of the classical theory of functions of one or more complex 
variables. These matters have been discussed in outline by the 
author in [46]. A preliminary example of what can be done is the 
following (unpublished) generalization of Hadamard's three circles 
theorem. If ƒ is analytic in G^XK and is bounded in y for each fixed 
/ in K, then log ( s u p ^ G ^ \f(y, l)\ ) is a convex function of I on the 
convex subset K of the vector space G. This theorem includes 
Hadamard's three circles theorem for several complex variables and 
hence Thorin's [75] generalization of the M. Riesz convexity theorem. 
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The ideal theory of the rings oQ(n, G) seems not to have been 
investigated at all in the general case, although Gelfand in [ l l ] has 
defined such rings for the real line and integer groups and these rings 
have been further discussed in [22]. The fact that the functions/0 

are analytic instead of merely continuous can naturally be expected 
to produce many divergences from the theory of jQ(G). In particular 
the theorem of Kaplansky to the effect that an ideal whose hull is only a 
single point must be maximal certainly cannot be expected to carry 
over. In fact for each point y, I "interior" to G^XK and each "direc­
tion of differentiation" v the set of all f€zJÇ}(G, JJL) for which fv(y, I) 
=f(yy l)=0 will be an ideal which will not be maximal but will be 
contained in only one maximal ideal. A number of questions suggest 
themselves. Is every ideal with a finite hull maximal provided that 
every point of the hull is an extreme point of the boundary of 
G^XK; that is, a point of the form y, I where / is an extreme point 
of K? Is every counter example to the proposed analogue of Kaplan-
sky's theorem of the form just described (with higher order deriva­
tives of course)? Do the extreme points of the boundary of G^XK 
constitute the boundary in the sense of Silov [22] of the set of maxi­
mal ideals? These are questions which the author intends to investi­
gate and discuss elsewhere. The last has been answered in the 
affirmative in special cases by Silov. 

The work of Laurent Schwartz [66] on mean periodic functions 
has close connections with the foregoing. Schwartz considers the set 
of all continuous functions on the real line topologized so that con­
vergence is uniform convergence on compact sets. The dual of this 
topological vector space is the set of all complex-valued Borel meas­
ures on the line which are concentrated in compact sets. These 
measures form a ring under convolution and there is a one-to-one 
inclusion inverting correspondence between the closed translation in­
variant subspaces of continuous functions and the closed ideals in 
this ring. This ring is of the same general nature as those considered 
above and its closed maximal ideals are in one-to-one correspondence 
with the points of the complex plane. The canonical homomorphism 
carries this ring into a multiplicative ring of entire functions. 
Schwartz shows essentially that every closed primary ideal in the 
original ring is determined by a complex number a and a non-negative 
integer k and consists of all members such that the corresponding 
entire function and its first k derivatives vanish at the point a. He 
shows furthermore that every closed ideal is an intersection of 
primary ones, thus determining all possible closed ideals in a very 
explicit fashion. 
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IV. GENERAL LOCALLY COMPACT GROUPS 

9. Preliminaries. The theory of locally compact groups which are 
neither compact nor Abelian is much less well developed than the 
theories of either of these special classes. Even the *£2 theory, which 
is more or less complete for compact and Abelian groups, is in a 
rather unsatisfactory state for more general groups. A part of the 
trouble may be ascribed to the fact that when the group is neither 
compact nor Abelian one must deal with "continuous" decomposi­
tions into "multi-dimensional parts." Thus neither the discreteness 
of the compact case nor the one-dimensionality of the Abelian case is 
available and there is a compounding of difficulties. A perhaps more 
serious source of difficulty is the fact that it is no longer possible to 
confine attention to finite-dimensional representations. There are 
locally compact groups—the group of all two-by-two complex mat­
rices with determinant one is an example—which admit no non-
trivial finite-dimensional unitary representations at all. I t is thus 
necessary to turn to representations by unitary operators in infinite-
dimensional Hubert spaces and to analyze the more complicated phe­
nomena which almost always appear when one makes a transition 
from the finite to the infinite. 

10. Positive definite functions and the existence of sufficiently 
many irreducible representations. Let o£2(G) denote the Hubert space 
of all complex-valued functions on G which are square summable with 
respect to right invariant Haar measure in G. For each fÇz/J(G) and 
each s £ G let Us(f) be the function gÇz/J(G) such that g(x)=f(xs) 
for all x £ G . Then ƒ—>Us(f) is a unitary operator. Moreover the map 
s—>Us is a continuous representation of G in the sense12 that it is a 
homomorphism of G into the group of all unitary operators in J(J(G) 
such that (Us(J), g) is continuous in 5 for a l l / and g in jQ(G). This rep­
resentation is called the right regular representation of G. Its exist­
ence makes it clear that every locally compact group has sufficiently 
many representations to distinguish between any two group elements 
if infinite-dimensional representations are allowed. It does not follow 
at once that there need exist sufficiently many (or even any) non-
trivial irreducible representations. This much less trivial existence 
theorem was first proved by Gelfand and Raikov [21 ]. Here ir-
reducibility must be taken to mean that no closed invariant sub-

12 Actually ( Us(f), g) is continuous for all ƒ and g if and only if US(J) is continuous for 
all ƒ. In the sequel we shall use the terms representation and unitary representation 
interchangeably to denote a unitary representation which has one and hence both of 
these equivalent properties. 
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spaces exist. There are many examples showing that the theorem is 
false if irreducibility is taken to mean that no invariant subspaces at 
all exist. 

In order to prove this theorem Gelfand and Raikov exploit a close 
relationship which exists between representations and those con­
tinuous functions on G which have the property of "positive definite-
ness." Let U (x—>Ux) be any representation of G. Let <j> be any ele­
ment in the associated Hubert space and let ƒ be the continuous 
complex-valued function defined on G by the equation f(x) 
= (Ux(<l>), </>)• I t is trivial to verify that ƒ has the following property. 
If xi, X2, • • • , xn is any finite subset of G and Ci, c^ • • •, cn is a set 
of complex numbers, then J^Xi^iCjcrfCxiXT1) ^ 0 . Any function with 
this property is said to be positive definite. I t is not difficult to show 
that conversely every continuous positive definite function is obtain­
able in this manner from a suitable representation of G. This repre­
sentation may always be chosen so as to be cyclic in the sense that, 
for some <£, the Ux(<f>) span a dense subspace of the associated Hubert 
space. Moreover, if this is done, the correspondence is one-to-one in 
the following sense: (Ux(<t>), <t>) and (E/£(0;)> <f>') are the same for all x 
in G if and only if U and U' are unitary equivalent via a unitary 
transformation which carries cj> into <£'. The representation associated 
with the continuous positive definite function ƒ is irreducible if and 
only if ƒ is "elementary" in the sense that it is not of the f o r m / i + / 2 

where / i and f2 are linearly independent continuous positive definite 
functions. The existence of sufficiently many elementary positive 
definite functions on G and hence of sufficiently many irreducible 
representations is made to depend upon a theorem of Krein and Mil-
man [44] asserting the existence of sufficiently many extreme points 
in certain convex sets. The convex set to which this theorem is ap­
plied is the set of all continuous positive definite functions ƒ for 
which/(g) = 1. (Here e is the identity of G.) 

Functions on G of the form (Ux(4>), *W> where U (x-*Ux) is a 
representation of G and <j> and \{/ are in the Hubert space in which the 
Ux act, are finite linear combinations with complex coefficients of 
functions of the form (Ux(<t>), cj>). Thus if G is compact, the finite 
sums of elements from the ideals 3 a are exactly the finite linear com­
binations of elementary positive definite functions. R. Godement in 
[27] has generalized one form of the Peter-Weyl theorem to arbitrary 
locally compact groups by applying the theory of Gelfand and Raikov 
to show that every continuous function on such a group can be uni­
formly approximated on every compact set by finite linear combina­
tions of elementary positive definite functions. Actually Godement 
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developed much of the theory of positive definite functions inde­
pendently of Gelfand and Raikov. His paper [27] is a complete ex­
position of the work of Gelfand, Raikov, and himself, and contains 
many theorems about the behavior of positive definite functions on 
groups in addition to those described here. 

11. The reducibility of representations. Let U be a finite-dimen­
sional representation of a group G and let H be the underlying 
(finite-dimensional) Hubert space. I t is well known and easily proved 
that i î is a direct sum of orthogonal subspaces in each of which U 
induces an irreducible representation. This decomposition is unique 
in the sense that the irreducible summands in any two such are 
unitary equivalent in some order. Actually the only nonuniqueness 
lies in the decomposition of direct sums of mutually unitary equiva­
lent irreducible representations. In general the direct sum of all sub-
spaces of H in which the "same" irreducible representation is in­
duced is independent of the original decomposition. For infinite-
dimensional unitary representations a similar theorem holds provided 
that G is compact [6; 37]. When G is not necessarily compact it is 
not difficult to see that no such decomposition need exist. The regular 
representation of a noncompact locally compact Abelian group is an 
example. Any nonzero closed invariant subspace of -£2(G) is readily 
seen to have proper closed invariant subspaces. On the other hand, 
the Plancherel theorem shows that J(J(G) may be mapped unitarily 
onto o£2(G^) in such a manner that translation by s goes over into 
multiplication by (s, y) where y is a generic element of G. Roughly 
speaking the regular representation of G appears to be a sort of "con­
tinuous direct sum" of the one-dimensional (and hence irreducible) 
representations defined by the various characters. 

Clearly what is needed is a generalization of the notion of direct 
sum which will include as a special case a precise notion of "continu­
ous direct sum" and which can be used to decompose arbitrary repre­
sentations into irreducible parts. A theory of such a notion has been 
developed by J. von Neumann [58] in order to decompose rings of 
operators into "factors" and the von Neumann theory has been ap­
plied to the theory of representations of separable locally compact 
groups of F. I. Mautner [48; 49]. Slightly reformulated,13 the basic 
notion may be described as follows. Let S be a set and let 7 be a 
countably generated a field of subsets of S. Let /x be a countably 
additive measure defined on J. For each n = lt 2, • • • , °°, let 3Cn be 
an ^-dimensional separable Hubert space. Let d be a measurable 

Cf. Godement [29] for an alternative approach. 
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function from 5 to the positive integers and <*>. Let 3C(S, JU, d) be the 
set of all functions from S to X^VJ3CiU3C2VJ • • • such tha t : (a) 
jf(x)£3Cd(a» for all xy (b) for each w = l, 2, • • • , a> and each fl£3Cn, 
(ƒ(#), z;) is a measurable function of x for # in d~l(n), (c) 
ƒ(ƒ(#)> Kx))dfi(x) < oo. 3C(S, JU, d) becomes a Hubert space when the 
inner product of two members ƒ and g is defined by the equation 
[ƒ> g ] = ƒ(ƒ(#)» g W ) ^ ( « ) . Now suppose that a representation C/(a;) 

(s-*£/sX)) of a group G in 3Cd(*> is given for each x £ S . If £/(a?) depends 
measurably on x in the sense that, for each ny (U®(vi), v%) is measur­
able as a numerical function on d~x{n) for each v\ and ZJ2 in 3Cn, then 
there is a unique representation £7 of G in 3C(S, ju, d) such that for all ƒ 
in 5C(5, JU, J ) , the equation (UJ)(x) = Ulx)(f(x)) holds for each 5 and 
almost all #. C7 (or any representation unitary equivalent to U) is 
said to be the generalized direct sum of the representations U{x) with 
respect to the measure /*. I t is clear that this notion reduces to that 
of ordinary direct sum whenever 5 is a discrete measure space. 

This notion is adequate for the purpose indicated above. One of 
the principal results of [48] asserts14 that an arbitrary representation 
(in a separable Hubert space) of a separable locally compact group G 
is a generalized direct sum of irreducible representations of G. Un­
fortunately this result does not reduce the study of arbitrary repre­
sentations to that of irreducible representations, for the decomposi­
tion in question can be rather badly nonunique. On the other hand, 
there is a generally possible unique reduction into components 
which, while not irreducible, nevertheless give evidence of being the 
proper fundamental building blocks. The details are as follows. Let U 
be a generalized direct sum of representations f/(aj) with the asso­
ciated measure space S. For each measurable subset E of 5, let PE 
be the projection which takes/G^C(5, /x, d) into <J>EJ where CJ>E is the 
characteristic function of E. Then the set £ of all PE is a cr-Boolean 
algebra of projections in the sense that the identity / is in £, that 
whenever P l f P2 , • • • are in £ then P iP 2 = P 2 P i G £ and J - P i 6 6, 
and that if Pt-Py = 0 then P i + P 2 + • • • £ £ . Moreover £ commutes 
with U in the sense that PUS= U8P for all P £ £ and all s £ G . Con­
versely, given any cr-Boolean algebra £ which commutes with a rep­
resentation U, it is possible to decompose U as a generalized direct 
sum in such a manner that £ is the cr-Boolean algebra defined by the 
decomposition. Moreover, modulo null sets and replacement of ju by 
an equivalent measure, the decomposition is uniquely determined. 
We may speak of the decomposition defined by £. This decomposi-

14 Note that this furnishes an alternative proof of the existence of sufficiently many 
irreducible representations when G is separable. 
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tion will have almost all of its parts irreducible if and only if £ is 
maximal; tha t is, if and only if whenever £ ' 2 £ where £ ' is also a 
(7-Boolean algebra commuting with U, then £ = £ / . In general 
there will be a number of distinct maximal £'s commuting with a 
given U. This is so even for finite-dimensional representations, and 
occurs there when and only when some irreducible components are 
repeated. Consider now the cr-Boolean algebra £0 defined as follows. 
£ 6 6 0 if and only if E commutes with all U8 and with all operators 
A which commute with all t/8. £o is contained in every maximal £ 
and is uniquely determined by U. The decomposition defined by £0 

has the property that almost every component has as its £o the set 
consisting of 0 and the identity. We shall call a representation V 
whose £o is trivial in this sense a factor15 representation. Thus every 
representation has an essentially unique decomposition as a general­
ized direct sum of factor representations. 

In the finite-dimensional case a representation is a factor repre­
sentation if and only if it is a direct sum of replicas of the same ir­
reducible representation. In the infinite-dimensional case things are 
considerably more complicated. Given a representation U, let { Us} ' 
denote the set of all bounded operators A in the underlying Hubert 
space such that A Us= USA for all s (E G and let { Ua}" be similarly 
defined with { Us} replaced by { U8} '. Then { Us} " is an operator 
ring in the sense of Murray and von Neumann [52] and a necessary 
and sufficient condition that U be a factor representation is that 
{ U6} " be a factor, that is, that it contain only multiples of the 
identity in its center. Now Murray and von Neumann have studied 
factors in great detail and have classified them according to the be­
havior of a certain dimension function uniquely (up to a multiplica­
tive constant) defined for the projections in any factor. The factor is 
said to be of type In, I^, Hi, 11^, or III,» according as the (suitably 
normalized) dimension function takes on the values 1, 2, • • • , n\ 
1,2, • • -, oo , all real numbers between 0 and 1, all non-negative real 
numbers and oo, or just 0 and oo. Factors of all types exist. It is 
shown in [49] that a factor representation is a generalized direct 
sum of replicas of the same irreducible representation if and only if 
the corresponding factor is of type ln or !<». Moreover, this irre­
ducible representation is uniquely determined. For factor representa­
tions not of type In or I,», however, the behavior can be very differ­
ent indeed. Mautner [50 ] has given an example of a group whose 
regular representation is a factor representation of type Hi and has 

15 Because of the close connection with the Murray-von Neumann notion of factor 
for rings of operators. See below. Cf. Wigner [81 ]. 
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found a decomposition of it into irreducible components in which un-
countably many inequivalent representations occur. The author has 
shown (unpublished) that this representation has another decom­
position into irreducible parts such that (a) no two representations 
in the decomposition are unitary equivalent and (b) no representa­
tion in the decomposition is unitary equivalent to any representa­
tion in Mautner 's decomposition. On the other hand, general factor 
representations do share the following property of factor representa­
tions of types In and I*,. A decomposition as a direct sum of two other 
representations is always such that one component is unitary equiva­
lent to a discrete part of the other. To summarize : Every unitary repre­
sentation of a separable locally compact group is a unique general­
ized direct sum of factor representations. Every factor representation 
of type In or loo is a generalized direct sum (actually an ordinary dis­
crete direct sum) of replicas of a uniquely determined irreducible 
representation. A factor representation not of type In or 1^ can be 
decomposed into irreducible parts, but the decomposition may be 
wildly nonunique. The structure of such representations is very little 
understood. 

There remains the question of the extent to which a representation 
is determined by the factor representations into which it may be 
decomposed. The first remark to be made is that it is not sufficient 
simply to list the representations which occur in the breakdown— 
the measure jx is itself of decisive importance. This is more or less clear 
from the fact that sets of representations of measure zero may be 
added and removed without altering the sum. A better appreciation 
of the situation may be obtained by considering what happens when G is 
Abelian. Let G^ be the character group of G. Let JX be any Borel meas­
ure in G^. Let F£ be the operator which takes ƒ &£ 2 (G^ , fx) into g 
where g(y) = (s, y)f(y) for all y€zG. Then FM (s—>F?) is a unitary rep­
resentation of G and as a matter of fact every representation of G 
in which there are "no multiplicities" is unitary equivalent to some 
F \ Two such representations FM and Vp are unitary equivalent if and 
only if ix and v have the same null sets. When multiplicities are al­
lowed, things are only slightly more complicated. Choose a Borel 
measure jx in G^ and a Borel function d from G^ to the positive 
integers and <*>. Let ixn (n = 1, 2, • • • , 00) be the unique Borel meas­
ure which agrees with jx on subsets of d~l(n) and is zero for subsets of 
the complement of à~~x{n). Let F^ d be the direct sum of countably 
many replicas of FM<», one replica of FM1, two replicas of F^2, and so 
on. Then every representation of G is unitary equivalent to some 
F*,d, and F"^ and Vv*d' are unitary equivalent if and only if fx and v 
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have the same null sets and d and d' are equal almost everywhere 
with respect to JJL and v. The regular representation of G has Haar 
measure for /x and d(y)z=l. These facts about Abelian groups fol­
low from the theory of multiplicity of spectra for normal operators 
in Hubert space and the following spectral resolution theorem. If 
s—*Us is an arbitrary representation of the locally compact group G 
by operators in a Hubert space 3C, then there exists a mapping 
E—*PE of the Borel subsets E of G into projections in 3C such that 
the countable Boolean operations are preserved and such that for 
all <t> and x// in 3C(£/«(<ƒ>), \[/) = ƒ($, y)d[Py(4>), \p] where integration is 
over G with respect to the completely additive set function E 
—>(PE$, ^)» This theorem was first proved by Stone [73] for the case 
in which G is the additive group of the real line. I t was extended to 
arbitrary locally compact Abelian groups independently by Ambrose, 
Godement, and Neumark [ l ; 23; 59]. 

When G is not necessarily Abelian and U (s—> Us) is a representa­
tion of G, we have seen that U is an essentially unique generalized 
direct sum of factor representations U(v) with respect to a measure /x. 
In view of the foregoing it is natural to conjecture that two repre­
sentations U and V are unitary equivalent if and only if almost all 
the U(v) can be mapped one-to-one onto almost all the F(at) in such a 
way that null sets and measurability are preserved and so that the 
image of each U{v) is unitary equivalent to it. So far as the author 
knows no proof of this theorem is at present available. I t seems 
likely, however, tha t the methods of von Neumann and Mautner 
will be adequate to produce one. I t is to be observed that the "only if" 
part of this conjecture cannot be expected to be true unless the U{y) 

and V(z) are known to arise from a canonical decomposition into 
factor representations defined by an £o as described above. This 
follows from the fact noted above that a generalized direct sum of 
distinct irreducible representations can be a factor representation. 
The question: What measure spaces of factor representations "add 
up" to factor representations remains to be investigated. Until some­
thing substantial about its answer is known the theory of general 
representations can hardly be regarded as reduced to that of factor 
representations even when the above conjecture has been proved. 

For a fully satisfactory theory of the decomposability of repre­
sentations, even more than an answer to the questions of the last 
paragraph would be desirable. One would want a sort of "dual 
object"—a topological space G~t the points of which would be classes16 

10 Given two factor representations U and V, it can be shown that either (a) no 
discrete direct summand of one is unitary equivalent to any discrete direct summand 
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of factor representations. One would then hope for a theorem setting 
up a one-to-one correspondence between unitary equivalence classes 
of representations of G on the one hand, and on the other systems 
consisting of a family of null sets in G~ and a function assigning one 
member of its class to each member of G~. The prognosis for such a 
theorem for general locally compact groups is not encouraging. The 
author has studied in some detail the representations of semi direct 
products of locally compact Abelian groups.17 For a large subclass of 
these groups a complete analysis of the representations can be given, 
and there is little doubt that for members of this subclass suitable 
dual objects can be found. However, for semi direct products not in 
this subclass, irreducible representations and a fortiori factor repre­
sentations exist in a bewildering profusion which so far has defied 
exhaustive analysis. Certainly it is difficult to imagine their being 
all included in any sort of well behaved dual object. On the other 
hand, there are a number of groups other than the compact and 
Abelian ones for which dual objects and corresponding decomposi­
tion theorems are available. Gelfand and Neumark [15] have shown 
tha t this is the case for the group of all two-by-two complex matrices 
of determinant one. More generally, I. Kaplansky in an as yet un­
published work has obtained such a theorem for any "completely 
continuously representable" or "CCR" group; that is, for any group 
G which has the following property: UfÇ:aQ(G) and U is an irreduc­
ible representation of G, then ƒƒ(#) Uxdx is a completely continuous 
operator.18 I t can be shown that such groups admit only factor repre­
sentations of type In and I». I t is not inconceivable that, conversely, 
every group all of whose factor representations are of type I is a 
CCR group. If so, Kaplansky's result may be regarded as solving the 
reducibility problem modulo the pathology of nontype I factors. 

12. «£2(G) and the Plancherel theorem for unimodular groups. In 
this section we shall deal throughout with locally compact groups 
which are not only separable but also are "unimodular" in the sense 

of the other or (b) given any discrete direct summand of U and any discrete direct 
summand of V one is unitary equivalent to a discrete direct summand of the other. 
When (b) holds we may say that U and V are quasi unitary equivalent. The relation 
of quasi unitary equivalence is an equivalence relation in the technical sense and 
divides factor representations into classes of mutually quasi unitary equivalent ele­
ments. 

17 If G admits a closed normal subgroup Gi and a second closed subgroup G% 
such that GiC\G2—e and GiG2ssG, then G is said to be a semi direct product of Gi and 
G2. 

18 It is irrelevant whether left or right invariant Haar measure is used here. 
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that left and right Haar measures coincide. For such groups there is a 
single o£2(G) which is the underlying space for both the right and left 
regular representations. The family J of closed subspaces invariant 
under both right and left translation coincides with the family of 
closed subspaces which simultaneously reduce the right and left 
regular representations. A recent result19 of Segal [71 ] analyzes the 
internal structure of this family in quite a satisfactory manner. This 
result (proved earlier by Murray and von Neumann [53] for discrete 
groups) asserts that the weakly closed self-adjoint operator rings 
Ri and Rr generated by the unitary operators in the left and right 
regular representations respectively are commutators of one another ; 
that is, AÇLRI if and only if it commutes with all members of Rr 

and vice versa. I t implies in particular that the projections on the 
members of J are precisely the projections in the common center of 
Rr and Ru Thus the projections on the members of J not only com­
mute with one another, but form a cr-Boolean algebra of projections. 
More than this is true. The Segal result also implies that this Bool­
ean algebra is identical with the one which defines the decompo­
sition of the right (left) regular representation into factor com­
ponents. Let S be a measure space of factor representations effecting 
this decomposition. I t follows that the closed two-sided invariant 
subspaces of J£J(G) are in one-to-one inclusion preserving correspond­
ence with the measurable sets mod null sets of 5. Thus a theorem on 
the structure of the family of two-sided invariant closed subspaces of 
JQ(G) is available which is quite analogous to that which has already 
been discussed for compact and Abelian groups. 

A more difficult problem is that of discussing the decomposition of 
individual functions in <£2(G) ; that is, proving a generalization of the 
Plancherel theorem. For compact groups, it will be recalled, the basic 
fact is that ƒ|ƒ(*) | Ux= ]£« da Trace (U? (£/?)*) w h e r e / G - C ^ ) * d« 
is the dimension of the irreducible representation indexed by ce, and 
U/ = fUx-if(x)dx. In the general case it is natural to deal with factor 
representations and to replace the trace by the Murray-von Neumann 
relative trace.20 In short, one is led to make the following conjecture. 
Let 5 be a measure space effecting the decomposition of the right 
regular representation of G into factor components. Then it is pos­
sible to choose a particular relative trace function Tr in the factor 
associated with each point y of S and a particular measure JU, among 

19 Godement implicitly announces this result in a footnote in [28]. 
20 For suitably restricted operators in any factor there is defined [57] a linear 

functional which has the formal properties of a trace. This function is unique up to 
multiplication by a positive real number. 
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those with the given null sets in 5 in such a way that for all ƒ(E=C2 

(G)r\jQ(G) the formula 

ƒ I ƒ(*) \Hx = ƒ Tr {lf,{lft)*)dn(y) 

is valid. Such a formula has been established by F. I. Mautner [49] 
for discrete groups, by I. Kaplansky (unpublished) for CCR groups, 
by Gelfand and Neumark [15; 18] for the group of all nXn complex 
matrices of determinant one, and by R. Godement [24; 25] for cen­
tral21 groups.22 Very recently I. E. Segal [72] has been able to take 
care of the general case. 

For a really thorough going generalization of the Plancherel 
theorem one would demand a little more; namely (a) an "onto" 
theorem asserting that the mapping ƒ—» Uf can be extended by con­
tinuity so as to map J(J(G) onto all functions y—>Ay from S to oper­
ators in the relevant factors which are measurable in a suitable sense 
and such that ƒ Tr [(Ay(Ay)*]d(y) < oo, (b) an a priori dual object; 
that is, a topological space of factor representations given in advance 
and while not capable necessarily of decomposing arbitrary repre­
sentations, at least adequate for decomposing the right regular rep­
resentation, (c) some sort of a generalization of Haar measure for 
the measure /x; that is, a theorem asserting that fi can be chosen to 
have some invariance property with respect to Kronecker products 
of representations in the dual object and is uniquely defined by this 
property. The a priori dual object is a t present available for central 
groups, CCR groups, and the group of all nXn complex matrices of 
determinant one. There is an onto theorem for the two-by-two case 
of the latter group. So far as the author is aware the invariant meas­
ure question has not been discussed for any non Abelian groups. 

Just as for compact and Abelian groups, the Plancherel formula 
is connected with an expansion formula.23 For suitably restricted ƒ in 
-C(G) 

ƒ(*)= fTr(UliïM(y) 

for all x in G. This formula expresses ƒ as an integral with respect to 
y of a family of functions, the "yth" of which is a limit of finite linear 

21 Some of the statements in [24] are incorrect but have been corrected in a letter 
to I. Kaplansky. Presumably a corrected version of [24] will be published in due 
course. 

22 A central group is one whose group of inner autmorphisms has a compact closure 
in the suitably topologized group of all automorphisms. This notion is due to Gode­
ment. 

23 Cf. Lewitan [40 ]. 
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combinations of "matrix elements" of the uytW factor representation. 
For Abelian groups the expansion formula not only sets up a one-to-
one correspondence between functions in jQ(G) and functions in 
j£J(G^), but also sets up such a correspondence between the positive 
definite functions on G and the finite Borel measures on G. Spe­
cifically the formula/(x) = ƒ(#, y)g(y)dy where g&jQ(G) and g(y) ^ 0 
for all y may be generalized by substituting a finite Borel measure a 
for g and writ ing/(x) = / (x , y)da(y). The theorem that this formula 
sets up a one-to-one correspondence between measures and positive 
definite functions was proved by Herglotz when G is the group of 
integers, by Bochner [5] when G is the real line, and by Weil [78] 
and Raikov [64; 65] for locally compact Abelian groups in general. 
The reader will find the close connection between this theorem and the 
Plancherel theorem discussed from various points of view in these 
papers and in a recent work of Cartan and Godement [7]. The 
paper of Cartan and Godement presents an elegant and concise ex­
position of a large part of the theory of locally compact Abelian 
groups starting with a simple derivation of the generalized Herglotz-
Bochner theorem from the Krein-Milman theorem. 

Because of the connection between positive definite functions and 
representations one can expect a close connection between expansion 
theorems for positive definite functions and decomposition theorems 
for unitary representations. For locally compact Abelian groups, for 
example, it is easy to deduce the Ambrose-Godement-Neumark gen­
eralization of Stone's theorem from the generalized Bochner-Herglotz 
theorem and vice versa. For non Abelian groups, on the other hand, 
the lack of a satisfactory dual object for decomposing general repre­
sentations is reflected in the lack of a satisfactory generalization of 
the Bochner-Herglotz theorem. One can, however, guess at the form 
such a theorem would take; namely: If G is a group with a dual ob­
ject S and ƒ is a continuous positive definite function on G, then there 
exists a measure a on S and a function A(y—>Ay) from »S to positive 
definite operators such that Ay lies in a factor associated with y and 
f(x)=f Tr(U%Ay)diJ,(y) where Uy (x-*U%) is the corresponding fac­
tor representation. 

13. One-sided invariant subspaces. Very little has been done 
toward studying the one-sided invariant subspaces of <£?(G). Possibly 
the generalized direct sum theory can be applied to prove that each 
right invariant closed subspace of <£2(G) is defined by a suitably de­
fined "measurable family" of right invariant closed subspaces—one 
a t each point of the measure space effecting the decomposition of the 
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right regular representation into factor components. If so, one is re­
duced to studying the right invariant subspaces in a Hubert space 
under the action of a ring of operators which is a factor. The structure 
of such a family of subspaces is clear when the factor is of type In or 
Ico. I t is then order isomorphic to the family of all closed subspaces of 
a Hubert space. For factors of other types it is not understood at all. 
W. Ambrose [2 ] has inaugurated a program which may throw some 
light on the situation. He proposes to regard jÇJ(G) as an "algebra" 
with a partially defined multiplication and to study its structure from 
the point of view of the Wedderburn theory. The left and right 
"ideals" in this algebra are the left and right closed invariant sub-
spaces of JÇ?(G). 

14. aQ(G) and other group algebras. There is also little that can be 
said about the ideal theory of JQ(G) when G is neither compact 
nor Abelian. Such results as are available are primarily of a negative 
character. The representations of JÇ}(G) by bounded operators in 
Hilbert space, for example, are only loosely related to the ideal theory 
of <JQ(G). Many non unitary equivalent such representations may 
have a common kernel ideal. Moreover it is possible for an irreducible 
representation to have a kernel ideal which is not maximal—there 
is an example in which such an ideal is the null ideal and at the same 
time an intersection of maximal ideals with finite-dimensional quo­
tients. Perhaps the most significant positive result is that of I. E. 
Segal [69] asserting that in general the zero ideal is an intersection 
of closed primitive ideals. 

There are other ways, however, of generalizing the classical notion 
of group algebra and some of these lead to objects with a somewhat 
more tractable structure theory. I. E. Segal [70], for example, starts 
with the ring of all bounded linear operators in JQ(G) defined by con­
volution on the left with members of JQ(G) and proceeds to its uni­
form closure. A closely related algebra has been considered by Gelfand 
and Neumark [19]. Both of these algebras are isomorphic to uni­
formly closed algebras of operators in Hilbert space and such alge­
bras (called C* algebras) have given rise to a rapidly growing litera­
ture. The connection between a group and its attached C* algebra is 
close enough so that many results about the one can be interpreted 
as results about the other, and vice versa, and in some cases the 
approach via the algebra has certain advantages. In particular the 
results of Kaplansky on CCR groups have been obtained in this way. 

15. The determination of representations. In understanding the 
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phenomena which arise in generalizing the Plancherel theorem, as 
well as for various other reasons, it is useful to have a more or less 
complete analysis of the irreducible and factor representations of 
particular groups which are neither compact nor Abelian. Such an 
analysis has been carried out by Bargmann [3] for the three- and 
four-dimensional Lorentz groups24 and by Gelfand and Neumark 
[13; 14; 15; 16; 17] for the group of nXn complex matrices of de­
terminant one25 and the group of affine transformations of the line 
[ l2] . The author, as has already been indicated, has studied the 
representations of semi direct products of Abelian groups. The com­
plete analysis which is possible in certain cases has led to a theorem 
[47] about "imprimitive" representations of arbitrary separable 
locally compact groups which promises to be useful in studying rep­
resentations in general. In particular it turns out that every decom­
position of the regular representation of a subgroup Go of a separable 
locally compact group G as a generalized direct sum defines in a nat­
ural way a similar decomposition of the regular representation of G. 
This phenomenon when Go is Abelian has been discussed by Gode-
ment [28]. 

APPENDIX 

(Added June 1950.) Since this article was written a number of 
further developments in the theory it describes have come to our 
attention. We sketch some of these below. 

(1) Godement [30; 31; 32; 33] has extended his theory of central 
groups to the more extensive family of groups of finite class. The 
definition of this notion is such tha t a group is of finite class if and 
only if every neighborhood of the identity admits a subneighborhood 
which is invariant under inner automorphisms. All discrete, compact, 
and locally compact Abelian groups are of finite class. Via a theory 
of "characters" for these groups Godement obtains a Plancherel 
theorem for them based on a topological a priori dual object. His 
work is closely related to and in part dependent on that of J. Dix-
mier [8] on rings of finite class. 

(2) In a continuation of [49] Mautner has obtained independently 
of Segal a proof of the "weak" form of the general Plancherel theorem 
(§12, paragraph 2 of this paper). Mautner 's proof leans heavily on 
von Neumann's theory of weight functions for operator rings. Among 
other results in Mautner 's paper is the theorem that if a factor repre-

24 Cf. also Harish-Chandra [35]. 
25 The quotient of the 2X2 group by its center is the four-dimensonal Lorentz 

group. 
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sentation is not of type I, then any decomposition into irreducible 
parts has noncountably many components no two of which are 
unitary equivalent. 

(3) Via a notion of dual semi-groups in a group G and its "real 
character group" G the author has found a natural way of extending 
portions of the classical theory of the one-sided Laplace transform 
and of power series in a manner paralleling the generalization of the 
"two-sided" theory described in §8. In particular one can prove a 
theorem about "completely monotonie" functions in semi-groups 
which generalizes the solution of the Hausdorff moment problem 
and the Hausdorff-Bernstein-Widder theorem on completely mono-
tonic functions. The proof makes use of the Krein-Milman theorem 
in much the same way that Cartan and Godement used it to prove 
the Plancherel theorem. 
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