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In a recent paper,1 Anning and Erdös have shown that in a finite-
dimensional euclidean space a necessary and sufficient condition 
that an infinite set of points have the property that the distance be­
tween any two of them be an integer is that the points lie on a straight 
line. In this paper we shall investigate to what extent this theorem is 
true for general normed linear spaces of finite or infinite dimension. 
The theorem as stated is evidently not true for spaces of infinite di­
mension since in the space I2 the infinite set of elements Zi = (0, 0, • • -, 
21 /2/2, 0, • • • ) with 21/2/2 in the ith place and zero elsewhere have 
the property that ||s—2i|| « 1 for i?*j and the Zi are linearly inde­
pendent and not collinear. We shall prove that if a Banach space is 
not strictly convex there exists an infinite set of points each at an 
integral distance from the others which do not lie on a straight line. 
If the space is strictly convex, any such set has the property that if 
an infinite number of its points lie on a straight line then all the 
points of the set lie on the line. I t is possible to prove certain theorems 
in analysis by applying these theorems to function spaces. 

We shall define a minimal set connecting the points X\ and #2 in a 
Banach space X to be the set of all points of the space for which 
||#i—#||+||#2—#|| =||#i-~#2||. A straight line containing xi and x% is 
the set of all points of the form ax\-\-fix% where a+j3 = l . The set of 
points of the line for which a and j8 are non-negative is the line seg­
ment joining x\ and #2. If a +/? = l , o ^ 0 , j8 è 0 

11*1 - ((XXi + pXi\\ + 11*2 ~ (aXi + /3tf2)|| 

= 11(1 - a)xx - H | + ||(1 - jS)*2 ~ «*i|| 
= ||/9*i - px*\\ + \\axt - a*i|| = 0||*2 - «i|| + «||*2 - *i|| 

« ( a + 0 ) | | * « - *i|| = | | * 2 - *i|| 

and the line segment joining xi and x% is in the minimal set determined 
by xi and #2. A space in which the minimal set consists only of the 
line segment for any pair of points is called a straight line space. We 
shall show that such spaces are the strictly convex spaces. 

THEOREM 1. A necessary and sufficient condition that the minimal 
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set between any two points of a Banach space consist only of the line seg­
ment joining the points is that the space be strictly convex. 

PROOF. Suppose that the unit sphere of X is not strictly convex and 
that there exist points X\ and #2, ||#i|| H W | = 1 , a n d ||a#i+j3#2|| = 1 , 
a+j8 = l, a, j8^0. Then the line segment joining —xi and — #2 is 
also on the boundary of the unit sphere. If the sphere is translated to 
the point X\+x2 then (xi+#2) —-Xi — X\ and {X\-\-X%)—X\ = X<L and the 
line segment joining — x\ and —Xi is translated to coincide with the 
segment joining #2 and xi. Hence the distance between X1+X2 and a 
point on the segment is one, || (#1+3:2) — (affi+j8#2)|| = 1 . Also, 
||üaci+j8*2||=l. Thus 

|| (*i + #2) ~ (ctxi + /3#2)|| + ||0*1 + toll = ||*i + x2\\ 

and the segment ax\-\-^x2 is in the minimal set between 0 and #i+#2-
Hence the minimal set contains points other than those on the seg­
ment between 0 and X\+x2. 

Let X be strictly convex and let M be the minimal set between 0 
and a point x\. Consider the points yÇiM such that ||y|| =d< | |# i | | . 
One such point y'0 is on the segment yxf O ^ y ^ l . If there were 
another such point y±, the line segment between 3/0 and y\ would be 
interior to both the spheres | |#--#i| | ës||#i|| ~d and ||#|| <d since both 
these spheres are strictly convex. If y is a point of this segment, 
y^yo, yi, \\xi—y\\+\\y\\<\\xi\\—d+d = \\x\\\ which is not possible. 
This shows that yo is the only point of M a t a given distance d from 
0. Since the same argument may be used for any pair of points in Xf 

X is a straight line space. 
The above proof shows in particular that in a strictly convex space, 

metric definitions of a straight line coincide with algebraic definitions. 

THEOREM 2. If X is a Banach space which is not strictly convex 
there exists an infinite set of points {xi} such that \\Xj--Xk\\ is an integer 
for all j and k and the points are not all on the same straight line. 

PROOF. 2 Let S be the unit sphere in X, let yo = 0 and let {y%}, 
i = l , 2, 3, • • • , be a set of points on the boundary of S which all 
lie on the same line segment L. Let xn— XXo Jii # = 1, 2, 3, • • • . 
Evidently | |*o| |=0, | | * i | | « l , and ||*,|| =||yi+3>«|| = 2| |(yi+y,)/2| | = 2 
since | |#i/2+*2/2| | = 1. Assume that ||ffn-i|| =n — 1 and that ( l / ( n — 1)) 
•Xn-iE:L. Then 

Il n II 

IWI = Z)y< = ll**-i + y»ll 
II t'=0 II 

2 This proof was suggested by the referee. 
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= n 
n~ 1 1 1 

—• * n - l H Jn 
n n — 1 n 

= n. 

Hence ||#n|| is an integer and (l /w)x„GL. Since the above proof 
holds for any set yi of L, we have 

%n Xm\ — E * yo + Z y* = \ n — w 

and the distance between any two points of the set is an integer. The 
points do not all lie on the same line since in this case they would be 
of the form nyi and yi = yi for each i. 

In case the set {yi} is a finite set, i = l, 2, • • • , k, the same pro­
cedure can be followed and we can define the points yi+mk = yi for 
each i between 0 and k. For n^k the points xn would be of the form 

m k 

*n = ]£ (j + l)y< + XI iy< 
û»0 i—?n-fl 

iZ) yt + !L yi = i« + »» 

where n=jk+m and w= Zf= 0 y**> ^m= ^T=o yi- Thus all points of 
the set in this case lie on the k lines yu+vm, m = l, 2, • • • , fe, which 
are parallel in the sense that they are all translates of the line yu. 

THEOREM 3. Let the space X be strictly convex. Let {xi} be an infinite 
set of points of X such that ^xk — x}\ is an integer f or eachj and k. Then 
if any infinite subset of this set consists of collinear points, all the points 
of the set are collinear. 

In the proof of this theorem we make use of two lemmas. 

LEMMA 1. Let X be strictly convex and let S\ and Si be two spheres of 
different radii, r\ and r2, with centers x\, x%. Let xz be a point common 
to the boundaries of the two spheres lying on the line joining the two 
centers. Then Xz is the only point common to the boundary of the two 
spheres and, except for Xz, Si is entirely interior to 52, S2 is interior to Si, 
or the two spheres are entirely exterior to each other. 

PROOF. Suppose that x^ is another point common to the boundaries 
of the two spheres. If #4 is distinct from Xz, XA is not on the line of 
centers of the two spheres. If Xi lies between xi and #3 we have 

r% = ||*8 — *2|| = Iks ~ *i|| + 11*1 

= ||*4 — *l | | + ||*1 ~ 3 2 | | . 

* 2 || = ri + | |*i - *2|| 

However, r2 = ||*4--*2|| and this would imply that x* lies on the line 
of centers of the two spheres and gives a contradiction. In case Xz 
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lies between xi and *2 

|| 31 - *2|| = || «1 ~ *3|| + ||*2 ~ **|| = fl + H 

= ||*1 — ^ | | + ||*2 - *4|| 

which implies again that #4 lies on the line between x\ and x%. A similar 
argument holds if x% is between #1 and #3 and hence x$ is the only 
point common to the two spheres. 

To prove the second part of the lemma assume r ig r 2 , *IT^*2. Then 
either | |* i~* 3 | |+ | |*3-*2 | | = ||*i—Xt\\ or ||*i—**||+||*a—*s|| Hl*i~"*»ll-
Let * be any point of S2. In the first case 

||*1 - *|| + ||*2 - *|| à ||*1 ~ *2|I 

= ||*i ~ *s|| + ||*3 - *2|| = n + r2 

and ||*i— *|| >ri if #5^*3. Thus S2 is entirely exterior to Si except for 
#3. By a similar method it can be seen that in the second case 52 is 
interior to S\. 

LEMMA 2. Let a be a point of X and let rbea positive number r < ||a||• 
Let H be a "hyperboloid" in X with foci at 0 and a, that is, the set of 
points # £ X such that ||*|| —||#—a|| = r. Then a line through the focus 0 
has at most one point in common with H and a line through a has at most 
two points in common with H. 

PROOF. Let So be the sphere with radius r and center 6. The set H 
is the locus of the centers of all spheres exterior to So containing a on 
their boundaries and having one point in common with So. Let / be a 
line through 6 and suppose that / has a point *o in common with H. 
Let S(XQ) be the sphere exterior to So with center *o having one point 
y in common with So and containing a on its boundary. Evidently I 
contains the point y. Suppose that / intersects H in another point 
xi. Then S(xi) must pass through y and hence must be exterior to 
5(*o), contain 5(*o), or be contained in S(*o). In the first case y is 
exterior to the segment joining 0 and xi and hence S(xi) is not 
exterior to 5o. In the other two cases 5(*i) cannot contain a on its 
boundary and hence *i cannot be in H. 

Let / be a line through a. Suppose / intersects H in a point *o. Then 
S(*o) has a on its boundary and also a point of So. If I intersects H 
in another point xi, 5(*i) contains S(*o), is contained in 5(*o), or is 
exterior to S(*o). An argument similar to that of the first part of the 
proof shows that the first two cases cannot occur. Suppose that the 
third case occurs and that / intersects H in a third point *2. Then 
S(*o), S(xi)f and S(XÏ) all pass through a. By using Lemma 1 it can be 
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seen that if #o, Xi, and #2 are distinct then S(XÏ) must either contain 
or be contained in S(xo) or S(x\). In any case it cannot have only one 
point in common with So and hence / has at most two points in 
common with H. 

I t is evident that the above lemma holds for H defined by any two 
foci. 

PROOF OF THE THEOREM. Suppose that an infinite set of the x{ lie 
on a line /. I t can be assumed that # i=0. Let a be a point of the set 
not on /. Consider the family of hyperboloids \\x—a\\ —1|*| | = » and 

\\x 
*l 
+1 

\x—a\\ =n for n an integer or zero. In the first case 

x—a\ 
x—a\ 

1+ 
< = w+||x| | and in the second case ||#|| =#+||tf—#j 

and in both cases if the hyperboloid is to contain points not 
I <z|| — 1. Since for each i, 
or ||#J| —||#i—all is an 

on the line between 6 and #, n cannot exceed 
||#t-|| and \xi—a|| are integers, ||^<—a|| —1|#»|| 
integer. Since I can intersect each of the first type of hyperboloids in at 
most two points and each of the second in at most one point, I cannot 
contain more than S\\a\\ — 1 points of the set. Hence if I contains an 
infinite subset of the given set it must contain all points of the set. 

The above proof shows that if X is strictly convex and if Xi 
and Xj are two points of the set then any line through Xi but not 
through Xj contains not more than 3||# —Xj\\ —1 points of the set. If 
the norm of the difference is one the integer n of the hyperboloids 
described above is zero and the only hyperboloid between the two 
points is the bisecting hyperplane of the segment joining the two 
points. Hence the line through Xi but not x$ can contain at most one 
other point. Applied to the set Zi in I2 discussed at the beginning of 
the paper this shows that a line through any point of the set contains 
at most one other point of the set. 

The above theorems give interesting results when applied to vari­
ous well known strictly convex spaces. For example, let {xi(t) } be a 
set of functions in the space Lp(a, 6), p>l, such that xo(i)^0 and 
(fa \xi(t) —Xj(t)\pdt)1/p is an integer for each i and j . The following 
corollaries are true. 

COROLLARY 1. Let the family {#*(0} contain an infinite subfamily 
of the f or m <XjXi(f). Then every f unction of the family is a multiple of 
XiO). 

COROLLARY 2. For any k, the number of multiples of Xk(t) which may 
occur in the set cannot exceed 3-min ( / a | ^* (0""^ (0 | p ^) 1 / p "~ l where 
the minimum is taken for j 9* k and xj(t) not a multiple of Xh{t). 

UNIVERSITY OF WISCONSIN 


