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In the classical Lie theory it is shown how to construct a dif
ferential equation invariant under a given group, and how to solve 
an equation when a group leaving the equation invariant is known. 
However, little is said about the problem of determining the group 
for a given differential equation, which is by far the most interesting 
problem. 

In the present paper, necessary and sufficient conditions for the 
existence of an infinitesimal contact transformation leaving a given 
equation invariant are determined along with the general form of the 
characteristic function of the group. It will also be shown how to 
reduce, by a proper change of variables, the infinitesimal contact 
transformation to a point transformation. This enables one to solve 
the transformed differential equation by Lie's methods. Passing 
back to the original variables, a new differential equation is obtained 
which combined with the original equation gives its solution in para
metric form. 

Let 

df df df 

dx dy dp 

be the symbol of the infinitesimal contact transformation leaving in
variant the differential equation u = F(v), with u = u(xy y, p), 
v — v(x, y y p), p = dy/dx, and F such that the equation G(xy yy p) 
= u — F(v) = 0 satisfies the various conditions for the existence of 
solutions (but otherwise arbitrary). Throughout this paper we shall 
assume t h a t : 

(A) Both u and v have first derivatives with respect to x, y and p, 
at least in some region R of the (x> y, £)-space. 

(B) The Jacobians 

d(u, v) d(u, v) d(u, v) 

à(y, P) à(P, x) à(», y) 

have in R derivatives of the first and second orders, while J\ and J% 
have also derivatives of the third order with respect to x, y and p} 
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as are involved in the discussion. 
(C) The functions u and v are not in involution, that is, 

Up ux H~ puy 

Vp Vx + pVy 
[uv] = = / 2 - pJi fâ 0. 

Since u and v are to be invariants under Bf they will satisfy the 
partial differential equations 

du du du 
£ — + v — + 7T— = 0, 

dx dy dp 

dv dv dv 

dx dy dp 

from which we obtain 

= o", 
d(u, v)/d(y, p) d(u, v)/d(p, x) d(u, v)/d{x, y) 

a — a{xy y} p) being the common ratio. This can be written 

(1) (• = <rJi, rj = aJ 2y TT = aJs. 

If W is the so-called characteristic function of the infinitesimal 
contact transformation, we have also 

(2) W = pS-v = <r{pJi - /*) . 

Now to find cr we recall that 1 

dW dW dW 
(3) £ = , 7T= p 

dp dx dy 
As a consequence of (1), (2) and (3) we obtain the system of equa

tions 

da / dJx dJ2\ 

dp \ dp dp ) 

da da 
(4) (pj1-jt) — + p(pJl-Jt)-

dx dy 

K dJi dJ2\ ( dJi dJ2\ 1 

P ) + P[P J + /3 U = 0. 
dx dx) \ dy dy J J 

This system may be written in the homogeneous form 
1 See Cohen, An introduction to the Lie theory of one-parameter groups, p. 186. 
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df df 

(5) ** dff 

df df df 
Aif = ^- + p^- + M^ = 0, 

dx ay da 

in which 

/ ^ , , P(dJi/dp) - (dj2/ap) 
(6) M i = — a > 

pJi - J* 
(pÇdA/âx) - dJ,/dx) + p(p(dJi/dy) - dJz/dy) + Jz 

(7) M2 = - a 
pJi - Ji 

Adjoining to the system (5) the equations 

(8) Asf = (AiAjf = — + (AxMt - A2Mi) — = — + M3 — = 0, 
dy da dy da 

(9) A4 = (AtA3)f = ( i , M s - A3M!) — = 0, 
da 

df 
(10) Atf = ( ; M s ) / = (A2MS - A3M2) — = 0, 

da 
we see that the equations 

(11) AXM3 - AzMi = 0, AiMi - A3M-, = 0, 

are necessary and sufficient conditions in order that the system (4) 
have a solution. The system (5)-(8) implies the Jacobian complete 
system 

df df 
Klf = ~ + (M2 - pM3) — = 0, 

dx da 

df df 
(12) Kif=—+M3— = 0, 

dy da 
df df 

K3f=— + M i — = 0. 
dp da 

Either we may solve (12) or the equivalent total differential equa
tion 

(13) (M2 - pM3)dx + M3dy + Midp - da = 0. 

li f=if/(x, y, p, a) is the solution of (12), then 
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(14) \p(x, y, p,<r) = c 

will be the solution of (13), and conversely. Equation (14) determines 
or in terms of #, y, and p. Since a enters as a factor in Mi and M2t it is 
also a factor of M3.2 Hence, equation (13) can be written 

da/a = Jco(#, y, p), 

and so <r has the form 

(15) a = keo^'V'pK 

Several special formulas for a may be found. For instance, if 

Mi = <t>i(p)cr, M2 = <t>2(x)a, 

then lf3 = 0, and equation (13) reduces to 

<t>2(x)adx + <t>i(p)adp — da *= 0, 

from which we obtain 

a = k exp ( I (j>i(p)dp + I #2(#)d#). 

Therefore, the characteristic function takes the form 

(16) W = *(#/i - J*) exp ( f $i(p)dp + \ <t>2(x)dx) 

by virtue of (2). This special case will be of use in some examples to 
be considered later. 

We summarize our results in the following theorem. 

THEOREM. The characteristic function W of the infinitesimal contact 
transformation leaving invariant a given differential equation u = F{v) 
can be found by the formula 

W = k(pJi - J2)e«'<«.*.*> 

ift and only if, the equations 

AiMz — AzMi = 0, A2MZ — AZM2 = 0 

are both satisfied for all values of x, y and p. 

Now, to solve the differential equation u = F(v) invariant under 
the known group 

2 If M^aNu M2 = <rN2f then Mz=*AiM2--AiMi~<T{dN2/dp--dNl/dx-pdNi/dy). 
This relation, together with (11), are the conditions in order that (13) be an exact 
differential when divided by <r. 



i949l DIFFERENTIAL EQUATIONS OF THE FIRST ORDER 359 

(17) £ ƒ = wp^+(pW9-W)^-(W. + pWv)?f, 
dx ay dp 

we consider two cases : 
(A) Both %=Wp and r) = pWp—W are free of p. This case occurs 

when W is linear in p. Then Bf represents an extended point trans
formation and the equation may be solved by introducing canonical 
variables. 

(B) Either £ or rj, or both, contain p. Then Bf represents a general 
contact transformation. 

In this case we may show that by a suitable change of variables the 
transformation reduces to a point transformation.3 To this aim, let 
us define a finite contact transformation 

(18) X = X(x, y, p), Y = Y(x, y, p), P = P(x, y, p) 

in the following manner: X = w, Y?*X in involution with X, that is, 
such that [ I F ] = 0, or 

ÔY dY ÔY 
(19) Xp + pXp (Xx + pXy) = 0, 

dx dy dp 
and P by the equation P = Yp/Xp. The symbol for the transformed 
group will be 

~ - df df df df df df 
(20) Bf = É — + rj —- + ff — = BX—- + BY — + BP — . 

dX dY dP dX dY dP 
But l = BX = Bu — Q since u is invariant under 5 / . Since l = Wp 

this implies that W is free of P . Also, we find that rj does not contain 
P because rj = PWp — W= —W. Hence, S / is an extension of the 
point transformation group 

(21) Uf= -W{X, F ) - | ~ . 

This group can be reduced further by introducing the canonical 
variables 

X* = Z, Y* = - f • 
dY 

W(Xt Y) 

Then the symbol of the infinitesimal transformation assumes the 
8 Cohen, loc. cit. p. 195, proves that the contact transformation reduces to a point 

transformation by assuming the corresponding differential equation solvable for p 
in the form p = œ(x, y). 
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simplest form 

U*f = 
dY* 

The equation u = F(v) when written with the variables X, F, P 
takes the form 

(22) 4>(X, F, P) = 0. 

This is also a differential equation, that is, P = dY/dX, since the 
relation dY—PdX = \(dy—pdx) which holds for any contact trans
formation implies dY—PdX = 0 whenever dy—pdx = 0. Since (22) 
will be invariant under (21) we are in position to solve (22), either 
directly or by introducing the canonical variables X*, F* [this last 
step reduces the equation to the form dY*/dX* = G(X*)]. Let 

(23) *(X, Y,c) = 0 

be the solution of (22). Passing back to the original variables we get a 
second differential equation 

* ( * , y , PfC) = 0 

which together with u — F(v) determines the integral curves of the 
latter in terms of the parameter p. 

Examples. I. Consider the differential equation 

(24) P + y/P= F(x + 2p). 

Here u = p+y/p, v = x+2p. Hence, it follows that Ji = 2/p, J 2 = l 
~y/P\ Js=~l/P, pJi-Ji=l+y/p*, M! = 2a/p, M* = Mz = 0. 

Formula (16) can be applied with <f>i(p) =2/p, faix) = 0 . Therefore, 
the characteristic function of the group is 

W = k(l + y/p2)p2 = k(p* + y). 

Since a constant factor is irrelevant, we see that equation (24) is 
invariant under the infinitesimal contact transformation 

df df df 
Bf=2pf+(p*-y)-±-pf. 

ax ay dp 

By taking X = v = x+2p equation (19) reduces to 

dY dY dY 
(25) 2 + 2p = 0. 

dx dy dp 
The corresponding system of ordinary differential equations is 
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dx dy dp dY 

~2~~ 2 ^ ~ ^ ~ ~ ( ^ , 

from which we obtain Y=p2+y as a particular integral of (25). 
Finally we have P — 2p/2—p. Introducing the new variables in (24) 
we get dY/Y=dX/F(X). Hence, we have 

r dx 

Passing back to the variables x, y, p we obtain 

(26) p2 + y - <**(•+**> = 0. 

The system (24)-(26) furnishes the solution of the equation (24). 
For instance, if F(x+2p)=tan (x+2p)t equations (24) and (26) 

are respectively 

P + y/P = tan (x + 2p), p2 + y = c sin (x + 2p). 

Solving for x and y we find 

x = — 2t + arc cos (//c), 

y= -P±(c*~ /2)1 /2 , 

which are the parametric equations of the solution, where t = p is the 
parameter. 

I I . To apply the method to find the group leaving invariant some 
familiar types of ordinary differential equations, let us consider first 
the homogeneous equation 

p=F(y/x). 

We have u — p, v = y/x, Ji~—l/x, J2~—y/x2, Js = 0, pJ\ — J% 
= (y—px)/x2, Afi = 0, M2 = 2cr/x, M3 = 0. By using formula (16) with 
<t>i(p)=z0f <t>2(x)=2/x, we get (taking &= — 1) 

W = px — y. 

Since W is linear in p we obtain the point transformation with 
symbol 

Uf = x \r y — ; 
dx dy 

which corresponds to the so-called homotetic transformation. 
For the linear equation p+P(x)y~ F(x) we have u — p+Py, 

v^x, / i = 0, 72==1, / 3 = - P , pJi-Ji = - 1 , Mi = 0, M2= -oP,ikr3 = 0. 
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By putting <j>i(p) = 0, faix) = —P, kee= 1 in formula (16) we obtain 

W = — exp ( — I Fax J. 

Hence the symbol for the group has the form 

I I I . Finally, we shall give a short table of some general types with 
the corresponding characteristic functions.4 

Differential Equations Characteristic Functions 

y = pX + F [x<j>(p) ] kx<j)(p) 

y = poo + pF\y<t>{p)\ kyp<i>(p) 

J + 4>(P) = pFÏx + j 4>'(p)dp/p\ k[y + <f>{p) ] 

e*<f>(x + y + p) = F[e*(p + 1)] H{x + y + p) 

p + rtp) L J p + 4>(p)] U 

HAVANA UNIVERSITY AND 
UNIVERSITY OF ALABAMA 

4 1 am indebted to my former students Miss C. Santana and Dr. R. Pena for the 
fourth and fifth types shown in the list. 


