quences, $g(u) - \overline{D}(p(u))$ in (2') being replaced by g(u), as it may be under conditions on the $A_n(\sigma)$ discussed above. For by their theorem, given

$$\int_{-\infty}^{\infty} p(\sigma) \exp \left[-\frac{1}{2} \int_{-\infty}^{\sigma} \frac{du}{g(u)} \right] d\sigma < \infty,$$

there exists a function F(s) holomorphic in Δ , not identically zero, such that $|F(s) - \sum_{1}^{n} 0e^{-\lambda_k s}| < e^{-p(\sigma)}$, hence $|F(s) - \sum_{1}^{n} 0e^{-\lambda_k s}| < A_n(\sigma)$ if $\{A_n(\sigma)\}$ is any asymptotic sequence with $g.l.b._{n\geq 1}$ $A_n(\sigma) = A(\sigma) = e^{-p(\sigma)}$; so that F(s) is represented asymptotically in Δ by the series $\sum d_k e^{-\lambda_k s}$ with $d_k = 0$ $(k \geq 1)$ with respect to the asymptotic sequence $\{A_n(\sigma)\}$, without being identically zero.

BIBLIOGRAPHY

- 1. S. Mandelbrojt, Sur une inégalité fondamentale, Ann. École Norm. (3) vol. 43 (1946) pp. 351-378.
- 2. S. Mandelbrojt and G. R. MacLane, On functions holomorphic in a strip region, and an extension of Watson's problem, Trans. Amer. Math. Soc. vol. 61 (1947) pp. 454-467.
- 3. S. Mandelbrojt, Analytic continuation and infinitely differentiable functions, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 239-248.

RICE INSTITUTE

ERRATA

R. D. Carmichael, On Euler's ϕ function, vol. 13, pp. 241-243; vol. 54, p. 1192.

Vol. 54, p. 1192, lines 2 and 9. For "Hedburg" read "Hedberg." Vol. 54, p. 1192, line 10. For "2²⁸+1 and 2²⁹+1" read "2^{2⁸}+1 and

 $2^{2^9}+1.$ "