CORRECTION: DERIVATIVES OF INFINITE ORDER

R. P. BOAS, JR., AND K. CHANDRASEKHARAN

It has been pointed out to us by S. Mandelbrojt that our statement¹ that M_{n+1}^o/M_n^o is nondecreasing is incorrect except on the interval $(-\infty, \infty)$ (where M^o must be replaced by M^o) and that for a finite interval there are in fact quasianalytic classes $C\{M_n\}$ which do not contain the class $C\{1\}$. However, Mandelbrojt has shown that our Theorem 2 is nevertheless correct; with his permission, we give his proof here. Theorem 2 states that, if f(x) belongs to a quasianalytic class $C\{M_n\}$ in a < x < b and if $f^{(n)}(x_0) \to L$ for one x_0 in (a, b), then f(x) is analytic in (a, b) and consequently $f^{(n)}(x) \rightarrow Le^{x-x_0}$ in a < x < b. There are two cases: either $\lim \inf M_n^{1/n} > 0$ or $\lim \inf M_n^{1/n} = 0$. In the first case $C\{1\} \subset C\{M_n\}$ trivially and our original proof applies. In the second case, let $\{n_j\}$ be a sequence such that $M_j^{1/n_j} \rightarrow 0$. Since $|f^{(n_i)}(x_0)| < k^{n_i} M_{n_i} \rightarrow 0$ and $f^{(n)}(x_0) \rightarrow L$, we must have L = 0. Given $\epsilon > 0$, there exist p and i such that $|f^{(n)}(x_0)| < \epsilon$ for n > p and $k^{n_i} M_{n_i}$ $\langle \epsilon \text{ for } j \rangle i$. For n > p let j > i and $n_j > p$; then for x in (a, b) and $|x-x_0| < 1$

$$f^{(n)}(x) = f^{(n)}(x_0) + (x - x_0)f^{(n+1)}(x_0) + \cdots + f^{(n_j)}(x')(x - x_0)^{n_j - n}/(n_j - n)!,$$

where x' is between x_0 and x. Then $|f^{(n)}(x)| \le \epsilon \sum_{k=0}^{\infty} |x-x_0|^k/k! + \epsilon = \epsilon(e^{|x-x_0|}+1)$, which shows that $f^{(n)}(x) \to 0$ uniformly between x_0 and x (and so, by a repetition of the argument, if necessary, in (a, b)), and also that f(x) is analytic.

In line 9 of page 523, replace ae^x by ke^x .

Brown University and Institute for Advanced Study

Received by the editors September 10, 1948.

¹ R. P. Boas, Jr. and K. Chandrasekharan, Derivatives of infinite order, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 523-526; p. 524.