
A NONASSOCIATIVE METHOD FOR ASSOCIATIVE ALGEBRAS 

SAUNDERS M A C L A N E 1 

This note exhibits a nonassociative proof for a strictly associative 
theorem concerned with the "Galois theory" of associative crossed 
product algebras. The theorem in question has also been established 
by somewhat more elaborate associative computations : it is perhaps 
of interest that the nonassociative proof to be given here appears 
to be both shorter and more conceptual than the associative proof. 
Practically no technical facts about nonassociative algebras are re­
quired for our proof. 

Let KZ)NZ)P be fields such that both K and N are finite, separable, 
and normal extensions of the base field P . The Galois group of K over 
P , or briefly Ç(K/P), will be designated as G, and similarly, 

(1) Ç(K/P)=G, Ç(K/N)=S, Ç(N/P) = Q. 

Then S(ZG. Each a £ G is an automorphism a: k<^ak of K, and in­
duces an automorphism a'ÇiQ of N/P; this correspondence a—>a' 
provides the natural isomorphism G/S=Q. We consider functions 
h(a, jS) with arguments a, /3 in G and nonzero values in the field K. 
The coboundary ôh is a similar function of three arguments in G, de­
fined as 

(2) Bh(a, 0, y) = [a- A(jS, y)]h(a, fa) [*(aft y)h(a, jS)]"1. 

It is convenient to assume that any such function h is "normalized," 
in the sense that A(J, j3)=h(a, 1) = 1, where / denotes the identity 
automorphism. The coboundary 8h is then also normalized, for it 
follows that ih(I, 0, y) =«&(«, J, 7) =Sh(a, /S, J) = 1. 

A factor set ƒ of 5 in the multiplicative group of K is a (normalized) 
f unction ƒ ((r, r)ÇiK defined for arguments a, TÇZS and satisfying the 
identity 5/(p, cr, r) = 1, for all p, a*, r in S. Each factor set ƒ leads to a 
crossed product (cf. [l , Chap. V]2) A = (K,f), which is a simple alge­
bra with center N, and which may be represented in terms of ele­
ments u(a), one for each ( r £ S , as the set of all sums a^^ok^uia) 
with arbitrary coefficients k(a) £ i £ and with the multiplication table 

(3) U(<T)U(T) = /(<r, T)U(<TT), u(<r)k = [<T'k]u((j), 
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for <r, r £ 5 , kï-K. The condition 5/= 1 on the factor set assures the 
associativity of this algebra. In this algebra, the automorphisms a of 
K are inner automorphisms a'k = C[u(a)]kf where C denotes conju­
gation; that is, where 

C[b]-a = bàtr\ a G A, 

for any regular element b of A. In particular, the elements u(a) are 
regular. 

A factor se t / , defined originally for arguments a*, r in 5, can always 
be extended to a nonzero "normalized" function h(a, /?) G-K", defined 
for all a, jSGG, so that 

(4) /(cr,r) = * ( (T,T), M G 5 * 

THEOREM. If the factor set f of a crossed product algebra A = (ÜT, ƒ) 
witó cew/er iV has an extension h as in (4) such that 

(5) 8A(a, j8, 7) = *(«', 0', V), «, ft Y G G, 

wAere / is a nonzero normalized function /(X, ju> *0G-K" defined for X, /*, 
^ G ö , tóe» ez>er;y automorphism XGG ea» 6e extended to an automorph­
ism w(K) of the crossed product algebra A = (K,f), in such fashion that 
there are regular elements t(X, fx) in A for each pair X, ixÇzQ with 

(6) W(X)W(M)=C[6(X,M)]W(XM), 

(7) *(X, /*, v)6(X, M)KXM, V) = [w(X)•&(/*, v)]b(\t i»). 

The hypothesis (5) asserts that hh depends only on its arguments 
a, j8, y modulo SQG. The conclusion shows that the automorphisms 
of the algebra A over P induce all the automorphisms XGQ of its 
normal subfield N over P . As this is analogous to a fundamental 
property of fields normal over P , such an algebra A may be called 
Q-normal. The conclusion (7) asserts that t is a noncommutative co-
boundary Sô, where the function b measures the extent to which w is 
not a homomorphism. In the terminology of Eilenberg and the author 
[2], this conclusion asserts that the function t of (5) is a "Teichmüller 
cocycle" of A. 

This theorem is the converse part of the main theorem of §10 in 
[2 ] ; it is this theorem which serves there to characterize those three-
dimensional cocycles (t's with dt — 1) which may appear as the Teich-
müller cocycles of central simple Ö-normal algebras over N. 

The proof now to be given does not depend on these concepts, as 
developed in [2]. The proof given there [2, §§9, 11] involves certain 
long identities in oh ; the present proof was obtained by the observa­
tion that these identities may be regarded as resulting from the re-
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association of certain products in a suitable nonassociative algebra 
R constructed from h. 

Construct R from symbols u(a), one for each «GG, as the set of all 
formal sums ^2ak(a)u(a) with arbitrary coefficients k(a)Ç:K. Addi­
tion of such sums (by addition of coefficients) and multiplication of a 
sum by a scalar in P are defined in the standard way, to make R a 
vector space of dimension m2 over P , where m denotes the degree of 
K over P. Multiplication in R is defined by the rules 

(8) u(a)k = ( a -&Xa) , u(a)u(p) = h(a, P)u(aP), 

and more generally, for k, k'ÇzK, <*> j3EG, by 

(9) [ku(a)][k'u(P)] = [k(a-k')h(a,p)]u(ap). 

The product of two sums of the form ^ak(a)u(a) is then defined by 
(9) and the distributive law. This multiplication satisfies both dis­
tributive laws, so that R becomes a nonassociative algebra over P . 
The element u(I) is an identity element of P . Comparison of (8) with 
(3) indicates that R contains the given associative crossed product 
algebra A ; it is our aim to show that the desired automorphisms of A 
appear in R as inner automorphisms, much as the automorphisms of 
a field K become inner automorphisms in an (associative) crossed 
product algebra. 

The deviation from the associative law in R may be measured by 
using (9) to calculate a triple product in the two possible associations, 
as 

[ku(a)]{[k>u(p)][V'<y)]} 
= {k(a-k')(a-p-k")[a-h(P, y)]h(a, py)}U(a(3y), 

{[ku(a)][k'u(P)]}[k"u(y)] 
= {*(«• k')(ap- k")h(a, 0)h(a0, y)}u(apy). 

Upon comparing the results, using the definition (2) of 5h, it appears 
that 

(1Q) [M«)]{[*'*(0)][*"«(7)]} 
= SA(«, 0, y)({[ku(a)][k'u(l3)]} [k"u(y)\). 

In particular, if h were a factor set (8A = 1), the algebra would be as­
sociative. More generally, the equation (10) asserts that ôh is the "as-
sociator" of the elements of the algebra in question. Such associators 
are similar to the additive associators used by Zorn [4] in studying 
alternative algebras and are exactly parallel to the associators used 
by Eilenberg and the author [3] to interpret cohomology groups of 
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abstract groups by means of loops. More explicitly, since / is normal­
ized, t(I, M» v) =/(X, I , v) = /(X, M, I) « 1, and hence, by (S) ôh(a, j8, 7) 
= ôh(a, cr, Y) =SÂ(a, j8, <r) = 1 for o*E5. Since the u(cr) for crGS give 
the algebra -4, this proves that every triple product in R with one 
factor in the subalgebra A is associative. 

LEMMA 1. For r£:R, P&G there is a unique element s in R such that 
u(j3)r = su(p). If r&A, then sGA also. 

The uniqueness of 5 is in effect a cancellation law asserting that 
su(P) = s'u(/3) for s, s'(ER implies s — s'. Indeed, take s =^2ak(a)u(a) ; 
then by the definition of the product 

su(p) = £ *(«)*(«, fi)u(afi) - E i f r j f r - 1 ) * ^ 1 , j8)»(7). 

On calculating a similar expression for s' and equating like coeffi­
cients, one finds that s — s', as asserted. Since the multiplication is 
distributive, it suffices to prove the existence of s for the case when 
r = ku(a); in this case s = (J3-k)h(fi, a) [hifiaQr1, /SJh^OSa/J-1) has the 
required property. In particular, since 5 is a normal subgroup of G, 
/3cr/3-1G<S' for a-G5, so that sG-4 whenever rÇ£A. 

In using this lemma it is convenient to write 5 as 0(j8) -r, so that 

(11) «G8)r= [0(0)-fRiS), rER. 

LEMMA 2. 0(/?) is an automorphism of A, 

PROOF. In virtue of the distributive law in R applied to (11), 0(j8) 
is a linear transformation of the vector space R into itself, while the 
associative law of R valid when one factor lies in A shows that 

6(0). (ar) = [0(/3M[0(/3)-r], aEA^ER; 

in particular, 0(/3) is an endomorphism of the algebra A. 
For elements /?, 7 G G and a£.A one has 

u(p)u(y)a = u(P)[6(y)-o]u(y) = [0O8).0(7-a)]*(j8, 7>(07), 

and by a different route 

u(fi)u(y)a = *(j8, y)u(Py)o = h(0, y)[0(Py)-o]u(Py), 
hence 

0(/3)• [0(7)•*] - C[A(|8f 7)]• [0(07)• 4 

Setting here 7=j3"~1, and observing that C[h(/3, /3"1) ] and 0(1) = J are 
automorphisms of ^4, we find that the product 0(j8)0(j8~1) is an auto­
morphism of A. By the same token 0(j3-1)0(j8) is an automorphism 
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of A. The first of these two results shows that 0(13) must map A onto 
all of A, and the second implies that 0(/3) can map no nonzero element 
of A into zero; together they mean that 0(/3) is an automorphism of 
A, as asserted in the lemma. 

For elements k in KQA, the definition (8) and (11) show that 
0(j3) is exactly the automorphism /3 of K. By a theorem in Galois 
theory, every automorphism X £ Q can be extended to some auto­
morphism /3 = tf(X) of K. Therefore X can be extended to the auto­
morphism w(K) =0(v(\)) of A, as asserted in the first conclusion of the 
theorem. 

To obtain the remaining conclusions (6) and (7), choose a fixed 
extension Î ; ( X ) G G of each automorphism XG(?> and in particular 
choose v(I) = / . Thus z;(X)'=X, and there is an t\ with 

v(X)v(fx) = T?(X, M M M , *?(X, fx) G S. 

(Actually, 77 is a factor set of Q in 5, obtained by regarding G as an 
extension of S by Q=G/S, with representatives v.) There is then a 
regular element è(X, fi)E.A for each pair X, pGQ such that 

(12) u(v(\))u(v(u)) = 6(X, »)u(v(\ix)). 

Indeed, one may define a regular element b with this property by the 
equation 

Kv(\ M), v(\fj))b(\, M) = h(v(\)y KM)M*?(X, M)), 

for if each side of this equation is multiplied on the right by U(VÇKIJL)), 
and if the multiplication rule (8) and the definition of rj are used, 
equation (12) results. Note also that 6(7, M) =ô(X, I) = 1. 

The rule (12), when interpreted in terms of the automorphisms 6 of 
(11), asserts that 

(13) e(v(\))6(v(ti) = C[b(\ M)]0(*(XM)). 

On the other hand, a triple product of u's may be computed as 

[u(v(\))u(v(n))]u(v(v)) = J(X, M)&(XM, V)U(V(\IXV)) 

or, on using the "associator" in (10) and the assumption (7), as 

[U(V(\))U(V(IJ)]U(V(P)) 

- [8h(v(\), KM), V(V))]^U(V(\))[U(V^))U(V(V))] 

= [ôh(vÇk), KM), I W Î H I W M •»(/*, v)]$(X, ixv)u{v(\ixv)). 

By the hypothesis (5) and the fact that p(X)' = X, the first factor here 
becomes /(X, /*> P)""1. Comparison of the coefficients of U(V(K[JLV)) in 
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these two expressions is possible by the cancellation law of Lemma 1 : 
it proves the desired second conclusion (7). 

Note. From the conclusion (6), (7) of the theorem it can be argued 
that /(X, fXj v)(BN. This, however, is a direct consequence of the 
hypothesis (5), for from (5) it follows that 

[H(<*', P, y')W, dp* y'W, a\ p) = tigct, p, y'W, <*', p</)t 

for £, a, /?, yGG, hence, setting £ = <r£S, that <r-t(a', ]8', y') 
= t(a', j3', 7 ' ) , for all <r. Therefore t(pt', P', y')EN. 
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