
ON RINGS OF ANALYTIC FUNCTIONS 

LIPMAN BERS 

Let D be a domain in the complex plane (Riemann sphere) and 
R(D) the totality of one-valued regular analytic functions defined in 
D. With the usual definitions of addition and multiplication R(D) 
becomes a commutative ring (in fact, a domain of integrity). A one-
to-one conformai transformation f =0(z) of D onto a domain A in­
duces an isomorphism ƒ—>ƒ* between R(D) and R(A):f(z) =ƒ*[</>(2)]. 
An anti-conformal transformation 

also induces an isomorphism: 

7(5) =ƒ*[*©]• 
The purpose of this note is to prove the converses of these statements. 

THEOREM I. If R(D) is isomorphic to R(A), then there exists either a 
conformai or an anti-conformal transformation which maps D onto A.1 

THEOREM II. If D and A possess boundary points', then every iso­
morphism between R(D) and R(A) is induced by a conformai or an anti-
conformal transformation of D onto A. 

Theorem I may be regarded as a complex variable analogue of 
theorems characterizing a topological space in terms of the family of 
its continuous functions. If R(D) is made into a topological ring by 
defining fn—>f to mean that ƒn(s)—>ƒ(z) uniformly in every bounded 
closed subset of D, then Theorem II implies that, except for a trivial 
special case, every isomorphism between R(D) and R(A) is of neces­
sity a homeomorphism. 

To prove the theorems we consider a fixed isomorphism between 
R(D) and R(A). It takes a function f(z), z(£D, into a function ƒ*(f), 
f G A, a set SC.R(D) into a set S*C.R(A). Let c be a complex constant. 

Presented to the Society, November 2, 1946; received by the editors May 27, 1947. 
1 After this paper was completed the author learned about a closely related un­

published result which was obtained by C. Chevalley and S. Kakutani several years 
ago. Chevalley and Kakutani proved that if to each boundary point W of B there 
exists a bounded analytic function defined in B and possessing at W a singularity 
then B is determined (modulo a conformai transformation) by the ring of all bounded 
analytic functions. The author is indebted to Professor Chevalley for the opportunity 
of reading a draft of the paper containing the proof. 
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For the sake of brevity we denote the element of R(D) corresponding 
to the functions ƒ(z)^c (or the element of i?(A) corresponding to the 
function g(f) =c) by the letter c. We call a complex number rational 
if its real and imaginary parts are rational. 

LEMMA 1. Either i*~i and for every rational complex constant 
r:r*~r, or i*~ —i and r* — f. 

The proof is clear. 

LEMMA 2. If c is a constant, so is c*. 

PROOF. If c is rational the assertion is contained in the preceding 
lemma. Irrational constants c are characterized by the existence of 
the inverse of the element c~ r for every rational constant r. 

LEMMA 3. All elements of R(D) are constants if and only if D is the 
whole complex plane including the point at infinity. 

The proof is clear. 
Lemmas 2 and 3 contain the proof of Theorem I for the case when 

D is the domain Org | s | 2£ oo. In what follows we consider only 
domains possessing boundary points. Without loss of generality we 
assume that neither D nor A contains the point at infinity. We 
also assume that i*=i; the case i*= —i can be treated in the same 
way. 

We denote the set of all functions belonging to R(D) and vanishing 
at a point Û G D by J0. The set J«Ci?(A), a(EA, is defined similarly. 

LEMMA 4. There exists a one-to-one mapping z—*z' =0(s) of D onto A 
SUCh that Ja* = A(a) . 

PROOF. Every element of R(D) generates a principal ideal (ƒ), 
that is, the set of all elements of the form fh, hÇzR(D). (ƒ) is said to 
be a maximal principal ideal if (f)?*R(D) and if (f)(Z(g)9£R(D) im­
plies that (ƒ) = (g). It is clear that (ƒ)* « (ƒ*) and that (ƒ*) is a m. p. 
ideal if and only if (ƒ) is. Hence Lemma 4 is an immediate consequence 
of the following lemma. 

LEMMA 5. (ƒ) is a m.p. ideal if and only if (ƒ) = Ja. 

PROOF. Ia is the principal ideal generated by the function z—a. 
If IaC.{g)y^R{D), then g(z) must possess zeros in D. Since 
z-a = g(z)h(z), h€R(D), g(a)=0 and ££/«. On the other hand, if 
ƒ(z) has no zeros in D, then (f)=R(D), and if f(a)~f'(a) =0, or if 
ƒ (a) =ƒ (6) = 0, a 9e b, then (ƒ) is contained in and different from the 
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principal ideal generated by the function z—a. It follows that (ƒ) is 
a m.p. ideal if and only if f(z) » (s—a)eh<t\ aÇzD, h£.R(D). 

LEMMA 6. For every point SoGA/(«o)*3*/*^^)]. 

PROOF. If c is a constant such that ƒ (so) =<;, then c~ƒ belongs to 
î o, so that 6*—ƒ* belongs to I<f>(x0) and/*[0(*o) ]==<;*. 

The following two lemmas are immediate consequences of Lemma 6. 

LEMMA 7. If ZOELD and f(zo) is a rational number, then f(z0) 
-/*[*<*o)]. 

LEMMA 8. If f(z) is univalent in D, thenf*(Ç) is univalent in A. 

LEMMA 9. Let f(z) be a univalent function defined in D, let f(D) be 
the image of D under the transformation w~f(z), and let W be the 
(finite) limit of a convergent sequence of distinct rational points {wn} 
belonging to f(D). W is a boundary point of f(D) if and only if there 
exists a function g(z)(ER(D) such that g[h(wn)]~n, h(w) being the 
function inverse to w=f(z). 

PROOF. If W is a boundary point of f(D), choose an entire 
function F(Z) such that F[(W-wn)~

l] =n. The function g(z) 
= F{ [W—f(z)]-1} satisfies the conditions of the lemma. On the 
other hand, if Wis an interior point ofƒ(£>), W-f(a), aG-D, and for 
every g(z)ÇzR(D)t lim g[h(wn)] exists and is finite. 

LEMMA 10. Letf(z) be a univalent f unction defined in D, so thatf*(Ç) 
is a univalent f unction defined in A. The domains f (D) and f*(A) are 
identical. 

PROOF. It follows from Lemma 7 that the rational points belonging 
tof(D) are identical with the rational points belonging to/*(A). f(D) 
is the set of all limit points of its rational points, except those limit 
points which lie on the boundary oîf(D). A similar remark applies to 
/*(A). But Lemmas 7 and 9 imply that if a sequence of rational points 
from ƒ(D) converges to a boundary point W, W is a boundary point 
of/*(A). 

Lemma 10 contains the proof of Theorem I for domains possessing 
boundary points. 

The proof of Theorem II depends on the following lemma. 

LEMMA 11. If D possesses boundary points, then c*=*c for every 
constant c. 

We prove this lemma in several steps. Let B be any domain. By 
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m[B] we denote the set of all complex numbers d such that the 
translation Z~z+d maps B onto itself. 

LEMMA 12. For every univalent function f &R(D) and for every con-
stant c the difference c — c* belongs to m\f(D)]. 

PROOF. The function fi=f+c is univalent in D, and the functions 
ƒ* and f f ~f*+c* are univalent in A (Lemma 8). By virtue of Lemma 
10, ƒ(.£>) is identical with/*(A), and fx(D) is identical with/i*(A). But 
a translation by c takes ƒ (D) into fi(D) and a translation by — c* takes 
/*(A) into ƒ * (A). Thus the translation by c — c* leaves ƒ (D) invariant. 

LEMMA 13. If D possesses finite boundary points, then there exists a 
univalent function f ^R(D) such that m[f(D)] is a discrete set 

PROOF. Let ƒ be a fixed univalent function defined in D. The set 
m\f(D)] is closed and a modul, that is, it contains d\—di whenever it 
contains d± and d%. Assume that m [f(D) ] is not discrete. Then it either 
contains all points, or all points of a straight line. If W is a finite 
boundary point ofƒ(£>), every point W+d, d£m [f(D) ], is a boundary 
point. I t follows that the boundary of f(D) contains a finite straight 
segment 5. Let Z(w) be the function which maps the domain exterior 
to S conformally onto \Z\ < 1 . The function g(z) = Z[f(z)] is uni­
valent and bounded in D. I t follows that m [g(D) ] contains only the 
point 0. 

Now we can prove Lemma 11 under the hypothesis of Lemma 13. 
Let f£zR(D) be univalent and such that m \f(D) ] is discrete. For 
every positive number t set ƒ< = /ƒ. By Lemma 12 the difference c — c* 
belongs to m[ft(D) ], that is, the number (c—c*)/t belongs to m [f(D) ]. 
I t follows that c - c* « 0.2 

I t remains to establish Lemma 11 for the case of the whole finite 
plane. 

LEMMA 14. If D is the domain \ z\ < <*> and A the domain | f | < <*>, 
then en—*™ implies c*~->oo. 

PROOF. Set f(z)=z. Then ƒ*($*) is univalent in A, that is, ƒ*(£) 
—AÇ+B, Ay B = const., Ay^O. For this ƒ and for ZQ~C, Lemma 6 
yields c*=A4>(c)+B. Hence c*-*™ whenever <j>(cn)—>oo. But cn—*«> 

2 An alternative argument was suggested to the author by C. Loewner. Assume that 
c—c**=reie, r^O. It is easy to see that for any univalent ƒ and for any domain D 
satisfying the hypothesis of Lemma 13 there exists a (finite or semi-infinite) straight 
segment 5 whose interior points belong to f(D) and whose end points are boundary 
points oîf(D). By a linear transformation we can achieve that S be the semi-infinite 
segment 2»te i9, t>0. It follows that c—c* does not belong to m[f(D)]. 
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implies the existence of a function gE.R(D) such that g(cn) is rational 
and g(cn)-+ °°. By Lemma 7, g* [0(c») ]—* oo, from which it follows that 

In order to prove Lemma 11 under the hypothesis of Lemma 14 we 
note that the transformation c~->c* is an automorphism of the com­
plex field. This automorphism is continuous by virtue of Lemma 14. 
Hence c* = c, for we assumed that i*=i. 

Lemma 11 being established, Lemma 6 yields the following lemma. 

LEMMA IS. If D possesses boundary points, thenf(z0) =ƒ* [#(zo) ] for 
every z0Ç:D. 

This lemma would contain Theorem II if we would know that 0(s) 
is analytic in D. To show this we select for ƒ the function ƒ(z) =*z. 
Lemma 15 shows that 0 is the function inverse to the univalent 
(analytic) function/*. 

In the statement of Theorem I the ring of all analytic functions can­
not be replaced by the subring B(D) of all bounded analytic func­
tions defined in D, even if B(D) is treated as a normed ring (with 
||/| |=l.u.b. | /(s) |), and the isomorphism between B(D) and B(à) is 
required to be norm preserving.8 In fact, let D be the domain \z\ <1 , 
and let A be the domain 0 < | z\ < 1. The normed rings B{D) and B(à) 
are identical.4 

Neither is it possible to replace R(D) by the linear space L(D) of 
all analytic functions defined in D, even if L(D) is considered to be a 
topological space (with the topology defined above) and the iso­
morphism between L(D) and L(A) is required to be a homeomorphism. 

In fact, let D be the domain 0 < r < | s| <1 , and let D\ and D2 de­
note the domains \z\ <1 and \z\ >r, respectively. Every function 
fÇzL(D) admits a unique Laurent decomposition:/^) =sg(z)+h(z)/zf 

gÇzL(Di), hÇzL(Di). It is easy to see that /n—>ƒ if and only if gn-^g 
and hn—*h. On the other hand, the linear subspace of L(D2) consisting 
of all functions of the form h(z)/z> A G i ( ^ ) , is topologically iso­
morphic to L(A), and L(D2) is topologically isomorphic to L(A). 
It follows that L(D) is topologically isomorphic to the direct sum of 
two spaces L(Di). Thus L(D) considered as an abstract linear topo­
logical space is independent of r. 

SYRACUSE UNIVERSITY 

8 As a matter of fact, every isomorphism is. 
4 Cf., however, footnote 1. 


