ON RINGS OF ANALYTIC FUNCTIONS

LIPMAN BERS

Let D be a domain in the complex plane (Riemann sphere) and R(D) the totality of one-valued regular analytic functions defined in D. With the usual definitions of addition and multiplication R(D) becomes a commutative ring (in fact, a domain of integrity). A one-to-one conformal transformation $\zeta = \phi(z)$ of D onto a domain Δ induces an isomorphism $f \rightarrow f^*$ between R(D) and $R(\Delta): f(z) = f^*[\phi(z)]$. An anti-conformal transformation

$$\zeta = \overline{\phi(z)}$$

also induces an isomorphism:

$$\overline{f(z)} = f^* [\overline{\phi(z)}].$$

The purpose of this note is to prove the converses of these statements.

THEOREM I. If R(D) is isomorphic to $R(\Delta)$, then there exists either a conformal or an anti-conformal transformation which maps D onto Δ .

THEOREM II. If D and Δ possess boundary points, then every isomorphism between R(D) and $R(\Delta)$ is induced by a conformal or an anticonformal transformation of D onto Δ .

Theorem I may be regarded as a complex variable analogue of theorems characterizing a topological space in terms of the family of its continuous functions. If R(D) is made into a topological ring by defining $f_n \rightarrow f$ to mean that $f_n(z) \rightarrow f(z)$ uniformly in every bounded closed subset of D, then Theorem II implies that, except for a trivial special case, every isomorphism between R(D) and $R(\Delta)$ is of necessity a homeomorphism.

To prove the theorems we consider a fixed isomorphism between R(D) and $R(\Delta)$. It takes a function f(z), $z \in D$, into a function $f^*(\zeta)$, $\zeta \in \Delta$, a set $S \subset R(D)$ into a set $S^* \subset R(\Delta)$. Let c be a complex constant.

Presented to the Society, November 2, 1946; received by the editors May 27, 1947.

¹ After this paper was completed the author learned about a closely related unpublished result which was obtained by C. Chevalley and S. Kakutani several years ago. Chevalley and Kakutani proved that if to each boundary point W of B there exists a bounded analytic function defined in B and possessing at W a singularity then B is determined (modulo a conformal transformation) by the ring of all bounded analytic functions. The author is indebted to Professor Chevalley for the opportunity of reading a draft of the paper containing the proof.

For the sake of brevity we denote the element of R(D) corresponding to the functions $f(z) \equiv c$ (or the element of $R(\Delta)$ corresponding to the function $g(\zeta) \equiv c$) by the letter c. We call a complex number rational if its real and imaginary parts are rational.

LEMMA 1. Either $i^*=i$ and for every rational complex constant $r:r^*=r$, or $i^*=-i$ and $r^*=\bar{r}$.

The proof is clear.

LEMMA 2. If c is a constant, so is c*.

PROOF. If c is rational the assertion is contained in the preceding lemma. Irrational constants c are characterized by the existence of the inverse of the element c-r for every rational constant r.

LEMMA 3. All elements of R(D) are constants if and only if D is the whole complex plane including the point at infinity.

The proof is clear.

Lemmas 2 and 3 contain the proof of Theorem I for the case when D is the domain $0 \le |z| \le \infty$. In what follows we consider only domains possessing boundary points. Without loss of generality we assume that neither D nor Δ contains the point at infinity. We also assume that $i^* = i$; the case $i^* = -i$ can be treated in the same way.

We denote the set of all functions belonging to R(D) and vanishing at a point $a \in D$ by I_a . The set $I_{\alpha} \subset R(\Delta)$, $\alpha \in \Delta$, is defined similarly.

LEMMA 4. There exists a one-to-one mapping $z \rightarrow z' = \phi(z)$ of D onto Δ such that $I_a^* = I_{\phi(a)}$.

PROOF. Every element of R(D) generates a principal ideal (f), that is, the set of all elements of the form fh, $h \in R(D)$. (f) is said to be a maximal principal ideal if $(f) \neq R(D)$ and if $(f) \subset (g) \neq R(D)$ implies that (f) = (g). It is clear that $(f)^* = (f^*)$ and that (f^*) is a m. p. ideal if and only if (f) is. Hence Lemma 4 is an immediate consequence of the following lemma.

LEMMA 5. (f) is a m.p. ideal if and only if $(f) = I_a$.

PROOF. I_a is the principal ideal generated by the function z-a. If $I_a \subset (g) \neq R(D)$, then g(z) must possess zeros in D. Since z-a=g(z)h(z), $h \in R(D)$, g(a)=0 and $g \in I_a$. On the other hand, if f(z) has no zeros in D, then (f)=R(D), and if f(a)=f'(a)=0, or if f(a)=f(b)=0, $a\neq b$, then (f) is contained in and different from the

principal ideal generated by the function z-a. It follows that (f) is a m.p. ideal if and only if $f(z) = (z-a)e^{h(z)}$, $a \in D$, $h \in R(D)$.

LEMMA 6. For every point $z_0 \in D$, $f(z_0)^* = f^* [\phi(z_0)]$.

PROOF. If c is a constant such that $f(z_0) = c$, then c - f belongs to I_{z_0} , so that $c^* - f^*$ belongs to $I_{\phi(z_0)}$ and $f^* [\phi(z_0)] = c^*$.

The following two lemmas are immediate consequences of Lemma 6.

LEMMA 7. If $z_0 \in D$ and $f(z_0)$ is a rational number, then $f(z_0) = f^*[\phi(z_0)]$.

LEMMA 8. If f(z) is univalent in D, then $f^*(\zeta)$ is univalent in Δ .

LEMMA 9. Let f(z) be a univalent function defined in D, let f(D) be the image of D under the transformation w = f(z), and let W be the (finite) limit of a convergent sequence of distinct rational points $\{w_n\}$ belonging to f(D). W is a boundary point of f(D) if and only if there exists a function $g(z) \in R(D)$ such that $g[h(w_n)] = n$, h(w) being the function inverse to w = f(z).

PROOF. If W is a boundary point of f(D), choose an entire function F(Z) such that $F[(W-w_n)^{-1}]=n$. The function $g(z)=F\{[W-f(z)]^{-1}\}$ satisfies the conditions of the lemma. On the other hand, if W is an interior point of f(D), W=f(a), $a \in D$, and for every $g(z) \in R(D)$, $\lim_{n \to \infty} g[h(w_n)]$ exists and is finite.

LEMMA 10. Let f(z) be a univalent function defined in D, so that $f^*(\zeta)$ is a univalent function defined in Δ . The domains f(D) and $f^*(\Delta)$ are identical.

PROOF. It follows from Lemma 7 that the rational points belonging to f(D) are identical with the rational points belonging to $f^*(\Delta)$. f(D) is the set of all limit points of its rational points, except those limit points which lie on the boundary of f(D). A similar remark applies to $f^*(\Delta)$. But Lemmas 7 and 9 imply that if a sequence of rational points from f(D) converges to a boundary point W, W is a boundary point of $f^*(\Delta)$.

Lemma 10 contains the proof of Theorem I for domains possessing boundary points.

The proof of Theorem II depends on the following lemma.

LEMMA 11. If D possesses boundary points, then $c^* = c$ for every constant c.

We prove this lemma in several steps. Let B be any domain. By

m[B] we denote the set of all complex numbers d such that the translation Z = z + d maps B onto itself.

LEMMA 12. For every univalent function $f \in R(D)$ and for every constant c the difference $c-c^*$ belongs to m[f(D)].

PROOF. The function $f_1 = f + c$ is univalent in D, and the functions f^* and $f_1^* = f^* + c^*$ are univalent in Δ (Lemma 8). By virtue of Lemma 10, f(D) is identical with $f^*(\Delta)$, and $f_1(D)$ is identical with $f_1^*(\Delta)$. But a translation by c takes f(D) into $f_1(D)$ and a translation by $-c^*$ takes $f_1^*(\Delta)$ into $f^*(\Delta)$. Thus the translation by $c - c^*$ leaves f(D) invariant.

LEMMA 13. If D possesses finite boundary points, then there exists a univalent function $f \in R(D)$ such that m[f(D)] is a discrete set.

PROOF. Let f be a fixed univalent function defined in D. The set m[f(D)] is closed and a modul, that is, it contains d_1-d_2 whenever it contains d_1 and d_2 . Assume that m[f(D)] is not discrete. Then it either contains all points, or all points of a straight line. If W is a finite boundary point of f(D), every point W+d, $d \in m[f(D)]$, is a boundary point. It follows that the boundary of f(D) contains a finite straight segment S. Let Z(w) be the function which maps the domain exterior to S conformally onto |Z| < 1. The function g(z) = Z[f(z)] is univalent and bounded in D. It follows that m[g(D)] contains only the point 0.

Now we can prove Lemma 11 under the hypothesis of Lemma 13. Let $f \in R(D)$ be univalent and such that m[f(D)] is discrete. For every positive number t set $f_t = tf$. By Lemma 12 the difference $c - c^*$ belongs to $m[f_t(D)]$, that is, the number $(c - c^*)/t$ belongs to m[f(D)]. It follows that $c - c^* = 0.2$

It remains to establish Lemma 11 for the case of the whole finite plane.

LEMMA 14. If D is the domain $|z| < \infty$ and Δ the domain $|\zeta| < \infty$, then $c_n \to \infty$ implies $c_n^* \to \infty$.

PROOF. Set f(z) = z. Then $f^*(\zeta)$ is univalent in Δ , that is, $f^*(\zeta) = A\zeta + B$, A, B = const., $A \neq 0$. For this f and for $z_0 = c$, Lemma 6 yields $c^* = A\phi(c) + B$. Hence $c_n^* \to \infty$ whenever $\phi(c_n) \to \infty$. But $c_n \to \infty$

² An alternative argument was suggested to the author by C. Loewner. Assume that $c-c^*=re^{i\theta}$, $r\neq 0$. It is easy to see that for any univalent f and for any domain D satisfying the hypothesis of Lemma 13 there exists a (finite or semi-infinite) straight segment S whose interior points belong to f(D) and whose end points are boundary points of f(D). By a linear transformation we can achieve that S be the semi-infinite segment $s=te^{i\theta}$, t>0. It follows that $c-c^*$ does not belong to m[f(D)].

implies the existence of a function $g \in R(D)$ such that $g(c_n)$ is rational and $g(c_n) \to \infty$. By Lemma 7, $g^*[\phi(c_n)] \to \infty$, from which it follows that $\phi(c_n) \to \infty$.

In order to prove Lemma 11 under the hypothesis of Lemma 14 we note that the transformation $c \rightarrow c^*$ is an automorphism of the complex field. This automorphism is continuous by virtue of Lemma 14. Hence $c^* = c$, for we assumed that $i^* = i$.

Lemma 11 being established, Lemma 6 yields the following lemma.

LEMMA 15. If D possesses boundary points, then $f(z_0) = f^*[\phi(z_0)]$ for every $z_0 \in D$.

This lemma would contain Theorem II if we would know that $\phi(z)$ is analytic in D. To show this we select for f the function f(z) = z. Lemma 15 shows that ϕ is the function inverse to the univalent (analytic) function f^* .

In the statement of Theorem I the ring of all analytic functions cannot be replaced by the subring B(D) of all bounded analytic functions defined in D, even if B(D) is treated as a normed ring (with ||f|| = 1.u.b. |f(z)|), and the isomorphism between B(D) and $B(\Delta)$ is required to be norm preserving. In fact, let D be the domain |z| < 1, and let Δ be the domain 0 < |z| < 1. The normed rings B(D) and $B(\Delta)$ are identical.

Neither is it possible to replace R(D) by the linear space L(D) of all analytic functions defined in D, even if L(D) is considered to be a topological space (with the topology defined above) and the isomorphism between L(D) and $L(\Delta)$ is required to be a homeomorphism.

In fact, let D be the domain 0 < r < |z| < 1, and let D_1 and D_2 denote the domains |z| < 1 and |z| > r, respectively. Every function $f \in L(D)$ admits a unique Laurent decomposition: f(z) = g(z) + h(z)/z, $g \in L(D_1)$, $h \in L(D_2)$. It is easy to see that $f_n \rightarrow f$ if and only if $g_n \rightarrow g$ and $h_n \rightarrow h$. On the other hand, the linear subspace of $L(D_2)$ consisting of all functions of the form h(z)/z, $h \in L(D_2)$, is topologically isomorphic to $L(D_2)$, and $L(D_2)$ is topologically isomorphic to $L(D_1)$. It follows that L(D) is topologically isomorphic to the direct sum of two spaces $L(D_1)$. Thus L(D) considered as an abstract linear topological space is independent of r.

SYRACUSE UNIVERSITY

³ As a matter of fact, every isomorphism is.

⁴ Cf., however, footnote 1.