
STEINER'S FORMULAE ON A GENERAL Sn+1 

CARL B. ALLENDOERFER 

1. Introduction. Steiner's famous formulae on parallel curves and 
surfaces have attracted considerable interest recently, several mathe­
maticians having developed various extensions of these theorems 
[3, 4, 6J.1 As stated by Steiner [5] these formulae have the following 
form: 

THEOREM 1. Let C be a convex curve in the plane of length L and area 
F, and let Cp be the curve parallel to C at a distance p from it {measured 
outward) with length Lp and area Fp\ then 

Lp= L + 2TP, FP=F + pL + irp\ 

THEOREM 2. Let 2 be a convex surface in ordinary space of surface 
area S, enclosed volume V, and integrated mean curvature M\ and let 
2P be the surface parallel to Hi at a distance p from it {measured outward) 
with surface Sp and volume Vp\ then: 

Sp « 5 + 2Mp + 4TTP
2, VP = V + Sp + Mp2 + 4rpV3. 

We shall prove the following generalization of these results: 

THEOREM 3. Let Sn+1 be a Riemann space of constant curvature, Ky 

differentiate of class Cz and complete in the sense of Hopf and Rinow. 
Let Vn be a hypersurface of 5W+1 which is closed and bounding in Sn+l 

and of class C8, and whose principal curvatures with respect to an out­
ward normal are all negative. The area of Vn will be called A and its 
volume Vol. Its various mean curvatures {to be defined in §3) will be 
called Mi{i = 0, • • • , n). Let Vp be a surface parallel to Vn at a distance 
measured along outward drawn geodesies where: 

for K > 0:0 g p g r/2Kli2; and for K < 0:p à 0. 

Further let the area and volume of V? be respectively Ap and Vol,. 
Then for K>0: 

Ap « è M<(*~1/f sin [pX1"])—«(cos [P#1 / 2])*, 

Volp = Vol + f ) Mi ÇP {K-w sin [«•irl/1])«-«(cos [x*Kl**]ydx*; 
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And for K<0: 

AP = Ê !£<([-JSTh^sinh [ P ( ^^ ) 1 / 2 ] ) ^ (cosh K - i T ) " 2 ] ) ' , 

Vol, = Vol 

+ it Mi f' ([-K]-1'2 sinh [x»(-Ky^y-Kcosh [x*(-K)li*])*daP. 
t=0 J 0 

Further simplifications of these formulae for special cases can be 
made by the use of the Gauss-Bonnet formula as developed by the 
author and A. Weil [ l ] . These results appear in §§3 and 5. 

The methods used in deriving these results are similar to those of 
Vidal Abascal [ó] who developed the special case of » = 1 in a recent 
paper. Herglotz [4] has studied the same problem on spheres and 
on hyperbolic subspaces of pseudo-Euclidean space and has derived 
the above formulae for these restricted cases. Related formulae were 
developed by H. Weyl [7] in his study of the volume of tubes 
lying on spheres. Reference should also be made to the general study 
of parallel curves on a general two-dimensional surface of positive 
(non-constant) curvature by Fiala [2], No such study is available 
for w-dimensional manifolds. 

2. Calculations. In Sn+1 we consider the geodesic parallel co­
ordinate system in which the first fundamental form has the expres­
sion : 

(1) ds2 = (dx0)2 + ga0dx«dxP (a, fi « 1, • • • , »). 

This is so chosen that : 
(a) x° = 0 is the hypersurface Vn\ 
(b) the curves xa = const. (a = l, • • • , n) are geodesies normal to 

Vn, on which arc length is measured by x° positively outward from 

(c) the positive orientation of 5W+1 is given by the ordering 
[x°, x1, • • • , xn] and that of Vn by [x\ • • • , * n ] . 

Further let the values of ga^ for x° = 0 be denoted by yap, so that 
7a/3 are the components of the metric tensor Vn. When more machinery 
is available, we shall discuss the domain of 5 n + 1 within which this is 
a proper coordinate system ; but for the moment we assume that we 
are operating within such a domain. 

If we assume that the normals to Vn in 5W+1 are directed outward, 
we may recall the standard formula: 
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\ dx° Ao.0 
(2) (—•) = - 0 * / 2 , 

where Qap are the coefficients of the second fundamental form of Vn 

relative to Sn+1. From (2) it follows that : 

(3) 
Mg«fl)1/2\ = a 

\ dx° A°«o (T«/3 

We now wish to calculate g112 (where g = det \gap\) in terms of 
Q«0> T«/3» and x°; for the integration of this quantity gives the desired 
formulae. To do this, we first consider a fixed point P on Vn and the 
geodesic G(P) through P normal to Vn (its arc length is x°). By a 
linear transformation (constant coefficients) of xa (a = l , • • • , n) we 
can find a new coordinate system on Vn, xa = La (x), in which the 
components of the first and second fundamental forms of Vn a t P 
reduce to sums of squares, namely 8ap and Qap (where 12^ = 0, a^ /3) . 

Now in Sn+t apply the coordinate transformation: 

%« = La(jxP), a, /3 = 1, • • • , n. 

The new line element is: 

(4) ds2 = (dx0)2 + gaedx^dxP 

where |a/3 —8a/3 a t P , and dgap/dx0 = 0, a^fi a t P . We now wish to 
prove the lemma: 

LEMMA. In the x coordinate system, |ais = 0 (a?*j3) /or a/Z £oiw£s on 
G(P). 

From (4) it follows that anywhere in 5W+1 

2 \dx»dxV 4 V d*° d W 

But since Sn+1 is of constant curvature : 

(6) -RaOO/3 = — Kga&\ 

so 

For «5^/3, equations (7) may be considered to be differential equa­
tions in gap («7^/3) whose coefficients involve constants and £„„ and 
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dguu/dx0. Taking these last functions as known, we consider the 
unique solution of (7) along G(P) with initial values a t P as given 
above, namely: 

(8) ( ? * ) P - 0 ; ( - ^ - 0 ioxartp. 

Now fa/3 = 0 (a^jS) is a solution of (7) satisfying the initial conditions; 
hence it is the only solution, and the lemma is proved. 

Returning now to (7) with a=j3, we find that as a result of the 
lemma the following equations hold along G(P) : 

Integrating (9) and taking (3) into account we find tha t : 

(10) (g««)1/2 = - QaaiK-"2 sin [xOK1!2]) + cos [xW*]. 

Hence along G(P) : 

(11) I1 / 2 = ft {~ ^««(^"1 / 2 sin [rf>K1'*]) + cos [xW*]}. 
< * = 1 

Returning to the original coordinate system we find that (11) trans­
forms into: 

(12) g1'2 = 7-1/2 det I - QaetK-1'* sin [xPK1'*]) + y*p cos [xOR1'2] \ 

where 7 = det \yap\. Now equation (12) is valid on every geodesic 
G(P) and hence holds throughout the entire region under considera­
tion. 

I t is now possible to discuss the domain of validity of formula (12). 
First we must require that g 1 / 2 >0; this limits x° to be less than the 
minimum distance to the first conjugate point on any geodesic GÇP). 
An effective way to do this (but not the most general) is to make the 
assumptions stated in Theorem 3. Even with this restriction it is still 
possible that two distinct geodesies G (Pi) and G(Pi) will intersect on 
5 n + 1 , and hence cause a singularity in the coordinate system. This 
awkward complication may be avoided by supposing that we are 
dealing not with Sn+1 but with a covering surface of it which puts 
these geodesies on separate sheets. We make this assumption, and 
thus in dealing with the volumes discussed in this paper we agree 
to count overlapping volumes with the necessary (finite) multiplicity. 
This means that our "parallel surfaces" are not necessarily true 
parallels in the sense of being the locus of points at a constant 
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minimum distance from Vn> but they are more properly called "geo­
desic parallel surfaces. " 

3. Results. We are now in a position to prove Theorem 3. For 

(13) Ap= f (g 1 / 2 )*o^*i . • • dx* 
J yn 

and 

(14) Vol, » Vol + f { fP g1/2dx°\ dxl • • • dxn 

where g1/2 is given by (12). 
To simplify these results consider the expression: 

(15) | - n«0 + XT** | - 0o + 0iX + 02x
2 + • • • + en\» 

where the 0< are thus defined. Further let 

(16) Mi = f 0* y-Utdx1 • • • dxn. 

We call Mi the ith mean curvature of Vn in 5 n + 1 . Since 0n=Y, Mn = A. 
For K>0 the expansion of (13) and (14) using the notation of (16) 
gives the formulae of Theorem 3. These formulae are indeed valid for 
K<0, but in this case they appear to involve complex numbers. By 
introducing the hyperbolic functions we find that in fact the entire 
expression is real, and so explicit formulae for this case are given in 
Theorem 3. 

Further simplification can be obtained in certain cases by the use of 
the Gauss-Bonnet formula. To prepare for this we introduce the fol­
lowing notation : 

4>.(p) = ÇP (jc-i/i sin [^X1/1])—<(cos [xPKWfydxP; K > 0, 
J o 

(17) rp 

4><Q>) - I ([-ITh^sinhf^C-jQ1'*^^ 
J o 

K <0, 

(18) d = K(n+»i*<f>i ( ) if </* 

where o>> is the surface area of a j-dimensional unit sphere (its sur­
face is of j dimensions) and Û>° = 2 . In this notation the Gauss-Bon­
net formula can be written: 
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(19) For n even: M0C0 + M£t + • • • + MnCn 

(20) For w odd: Af0Co + M2C2 + • • • + lf . t- .A_i + K<n+»'2 Vol 

where x ' is the inner characteristic of the volume bounded by Vn and 
X is the characteristic of Vn itself. These relations may be used to 
eliminate Af0 from the formulae of Theorem 3. We give two examples. 

Example 1. When » = 1, (20) gives: MQ — 2T~-FK, where we have 
written F instead of Vol to represent the area inclosed by the given 
curve. This leads to the results of Vidal Abascal which generalize the 
formulae of Theorem 1. Using the notations of Theorem 1, the calcu­
lations are as follows: 

F p = F + <I>QMO + 4>iMx 

(21) - F + K"1^ - cos (pZ1/2)] [2TT - FK] + Kr1» sin [pKl'2]L 

« F cos [pK1'2] + IT-1/* sin [pKl'2}L + 2irK~1(l - cos [püT1/2]). 

The derivative of this expression with respect to p gives the cor­
responding formula for Lp. 

Example 2. When w = 2, (19) gives: 

(22) Mo + AK = - W = 2TTX. 

This leads to the formulae: 

A + MtK-1'2 sin (p#1/2) cos (p#1/2) 

+ 27TXii:-1sin2(pü:1/2), 

Vol + AP + Mi{2K)~l sin2 (püT1/2) 

+ TTXK-^P - Ü : - 1 ' 2 sin (p^1 '2) cos (pK1'2)). 

These are generalizations of those given in Theorem 2. 

4. Formulae for K = Q. In the preceding discussion it has been 
explicitly assumed that K^O. To derive similar formulae for K = 0 
we can repeat the above discussion under this assumption; and we 
also get the same result by taking the limit of the formulae of Theorem 
3 as K—*0. The results are : 

(25) Ap - £ Mip«-\ 

(26) Vol, « Vol + £ (» - * + l ) - " 1 ^» -* - 1 . 
* - 0 

(23) ^ P = 

(24) 
Vol„ = 

lf.t-.A_i
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In this case the Gauss-Bonnet theorem says that : 

i — conx' — wnx/2, n even, 
(27) Mo 

w odd. 

Combining this with (25) and (26) and rearranging we have: 
nx/2, n even, 

(28) 

and 

tt-^i (œnx/2 

w odd, 

, , A Mn^+ip* pn+1 (wnx/2, « even, 
(29) Vol, = Vol + Ap + £ + < 

t.2 Î » + 1 lconx', n odd. 
In comparing these results with Theorem 2, we note that the M of 
Theorem 2 equals l f i /2 as here defined. 

5. Polar surfaces. When K>0, the formulae (18), (19) and (20) 
suggest that we consider the "polar" surface to Vn; that is, the surface 
at a distance ir/(2Klf2) from Vn. Since this surface may lie outside 
the domain of validity of our coordinate system, the application of 
Theorem 3 will not in general give correct results. Formal applica­
tion of the formulae of Theorem 3, however, does give answers which 
may be interpreted as the algebraic area and volume of the polar 
surface respectively. This means that in carrying out the integra­
tions we have algebraically combined the positive and negative 
portions of the result and thus obtained their algebraic sum. Using a 
subscript, P , to indicate the polar surface, we find that : 

(30) AP = MQK-"'2. 

Thus for n = 1 : 

(31) LP = (2x - FK)/K~u\ 

And f or n = 2 : 

(32) AP = (2TTX - AK)/K or A + AP = 27rx/#. 

This is a generalization of a result due to Blascke [4] in which he 
assumes that V2 is a topologie sphere. 

The Gauss-Bonnet formula suggests that we consider the "volume" 
(here we mean algebraic volume) bounded by the two polar surfaces 
a t distances +w/(2K1J2) and —TT/(2K1/2) respectively. Designating 
this volume by the symbol Vol| «p we find that for n even: 

(33) Vol \ip = 2(M0Co + M2C2 + • • • + JfnC.)/£<"+1>'*. 
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Or from the Gauss-Bonnet theorem it follows that: 

,P 1 o)n+1 

(34) Vol L P = x. 

If Fn is a topologie sphere (n even) we see that the volume Vol|£P 

equals the surface area of an (n+1) -dimensional sphere of radius j£~1/2. 
The analogous result for n odd is obtained by considering the 

"doubly polar surface" to Fn, namely the one at a distance of w/K1/2 

from Fn. Designating the volume between Vn and this surface by 
Vol|Jp we find that for n odd: 

i 2P 

(35) Vol |o = 2(M0Co + M2C2 + • • • + M^A-O/ÜT^1)/2 . 

Or from the Gauss-Bonnet theorem it follows that: 
, 2P W n + 1 

(36) Vol o x' - 2 Vol 

or 

(37) 2 Vol +Vol |oP = 
j£(n+l)/2 x'. 
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