
ON THE NOTION OF RECURRENCE IN DISCRETE 
STOCHASTIC PROCESSES 

M. KAC1 

1. Introduction. It is the purpose of this note to discuss "sta­
tistical " versions of the "Wiederkehrsatz" and the Poincaré cycle 
and to relate these versions to the ones encountered in dynamical 
considerations.2 Although the content of the note is entirely ele­
mentary and in part known it is hoped tha t it will help elucidate 
some of the basic notions of statistical physics. 

2. Recurrence and mean recurrence time in a class of discrete 
stochastic processes. Let xu #2, • • • be a sequence of random vari­
ables each capable of assuming the values &i, a2, • • • . We shall say 
that the sequence #i, x2, • • • is a stationary process if: (a) for each j 
the probability 

Prob. {xn = dj} 

is independent of n\ (b) for each set of values aau a82, • • • , a8r the 
probability 

Prob. {xkl = a,v xkz « a8v • • • , xkr = a8r) 

depends only on the differences] £»— k3\. 
Let 

Prob. {xn = «y} = Wi(aj) = W(a7) 

and 

Prob. [xi = aBl, x2 = a8v • • • , xr = a8r} = Wr(a8v a8v • • • , a8f). 

We shall use the notation âfc to denote any a,j different from a^ For 
instance, 

Prob. {xi = ai, X2 7* a2} = T^2(^i, ^2), 
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2 That the theory of stationary stochastic processes is mathematically equivalent 

with an "ergodic" theory (to which one is also led by dynamical considerations) was 
clearly recognized by Doob in 1934. See J. L. Doob, Stochastic processes and statistics, 
Proc. Nat. Acad. Sci. U.S.A. vol. 20 (1934) pp. 376-379. The analogies discussed in 
the present paper are but particular cases of Doob's general equivalence principle. 
However, since the motivations underlying the statistical and the dynamical points 
of view are of a somewhat different physical character it seemed desirable to treat 
both cases separately. 
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where it is understood that 

W2(ah â2) = S W2(ah ar). 
r*2 

We shall assume that WCa^^O for all j . 
We also define the conditional probabilities Pk(asi\a8v • • • , a8k) 

by the usual formula 

Wk(a>sV a*2, • • • , aSk) 
(1) Pk(a8l I a8v • • • , a8k) = 

^K) 
To simplify the notation we shall use a without a subscript to denote 
a chosen and then fixed ay. 

We now established the following, almost trivial, formula 

Wk+2(a, â, • • • , <x, a) = W*(fl, <z, • • • , a) — 2Tjrfc4.i(â, â, • • • , â) 

+ Wwiâ, ây • • • , â), & ^ 0, 

where it is understood that Wo = l. In fact, we have 

Wk+2(a> dy • • • , â, a) = TFjb+i(a, â, • • • , â) — JFfc+2(a, â, • • • , â), 

Wk+i(ay ây • • • , a) = PF^Câ, â, • • • , â) — Wh+i(à, â, • • • , â), 

JFfc+2(a, â, • • • , â) = Wk+i(d, ây • • • , a) — Wh+2{ây â, • • • , â), 

and formula (2) follows at once if one also notices that 

Wi(a) = 1 - Wi(a) = Wo - Wi(â). 

THEOREM 1. For each a 

00 

(3) J2 Pk+2(a | ây • • • , ây a) = 1. 

In view of the definition (1) of conditional probabilities it is suffi­
cient to prove that 

(4) E Wk+2(a, â, • • • , â, a) = W(a). 

Using (2) we obtain 

n 

,ev JL Wk+2(ay ây • • • , ây a) = 1 — PF(tf) — (wn+1 — Wn+2) 

= W(a) — (ww+1—wn+2) 

where from now on we shall use the abbreviation 
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w8 = W8(â, â, • • • , a). 

Since Wn+is=ww+2 and the w's are non-negative we deduce that 
limn^oo^w exists and hence 

lim O n + i — wn+2) = 0. 
n—»op 

This together with (5) implies (4) and hence (3). The interpreta­
tion of (3) is almost immediate. 

In fact, Pfc42(a| â, • • • , â, a) is the probability that if the "state" a 
was observed at the beginning, then it will be observed again, for the 
first time, after k + 1 steps. Consequently, 

00 

X) Pk+2(a I â, • • • , â, a) 

is the probability that if a was observed at the beginning it will even­
tually be observed again (the events of observing a for the first time 
after 1, 2, 3, • • • steps are obviously mutually exclusive). 

Theorem 1 can thus be restated as follows: with probability 1 each 
state is bound to recur. 

This is the "statistical" version of the "Wiederkehrsatz" and it will 
be seen in the next section that it implies the classical "Wiederkehr-
satz." 

If we think of the random variable xn as being associated with the 
observation of the system at time nr we can define the mean recur­
rence time of the state a as 

00 

(6) 0a = X) (* + i)rPk+t(a I â, • • • , â, a). 
/b=0 

This is the statistical analogue of Poincaré's cycle. In this connection 
we have the following theorem. 

THEOREM 2. If 

(7) lim Wn(a, â, • • • , a) = 0 
n—•<» 

then 

(8) 6 a = — — • 
W{a) 

It will be evident from the proof that (7) is also necessary for the 
validity of (8). 

I t is sufficient to prove that 
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(9) £ (* + l)Wn.t(o, â,---,à,a) = l. 

Using (2) we have 

n - l 

X} (k + l)Wk+2(a, à, • • • , a, a) = 1 — {(n + l)wn — me>w+i}. 

Now, 

(n + l)w» — raww+i = w(wn — wn+i) + wn 

and since we have assumed tha t wn—>0 it is sujfïicient to prove that 

lim n(wn — wn+i) = 0. 

Since the partial sums of (9) form a nondecreasing sequence it fol­
lows that n(wn — wn+i) -\-wn is a nonincreasing sequence. Since further­
more its terms are non-negative we deduce that 

lim {n(wn — Wn+i) + ww} 
n—>oo 

exists. 
Moreover, limnH>00ze>n exists (this is true regardless of the assumption 

(7)) and hence limn_»<„?*(wn--wn+i) exists. 
Now, the series of non-negative terms 

00 

X) (w„ — wn+i) 

converges (since lim^eoWn exists) and hence (since limn ^wn(wn — wn+i) 
exists) 

lim n(wn — wn+i) = 0. 
n—*oo 

This completes the proof of (8). 

3. The classical formulations. Let Q be a set in which a Lebesque 
measures has been established, and assume for the sake of simplicity 
that the measure of 0 is 1. Let co denote an element of 0 and let T be a 
one-to-one measure-preserving transformation of A into itself. 
Let furthermore A be a measurable subset of £2. The classical 
"Wiederkehrsatz" can now be stated as follows: 

THEOREM 1'. For almost every co in A there exists an w§jl swcft that 
Tno) is again in A t 
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Let /(co) be the characteristic function of the set A and consider the 
sequence of measurable functions 

ƒ(«) , / (rw ) , / (r^) , . . . . 

These functions can be considered as random variables which form a 
stationary stochastic process. Each random variable can assume only 
values 1 and 0 with respective probabilities | A | and 1 — | A | . 

Note that T$^+2(l, 0, • • • , 0, 1) is nothing but the measure of the 
set of those co in A which return to A for the first time after k + 1 steps 
(that is, Tk+1œ is the first iteration to fall into A), 

Formula (4) thus asserts that the measure of the set of those co 
which eventually return to A is equal to the measure of A, and 
this is equivalent to the statement of Theorem 1'. It should be 
emphasized that if we were to rewrite the proof of Theorem 1 in the 
terminology of Theorem 1 ' the resulting proof would not differ essen­
tially from the orthodox one.3 

We are led to a more interesting situation in trying to reformulate 
Theorem 2. The interest lies in the fact that condition (7) is essen­
tially equivalent to the condition that T is metrically transitive. 

For co£-4 let n(œ) denote the first w ^ l for which Tno)£:A. Thus 
n(œ) is the Poincaré cycle of co relative to the set A. We have now the 
following theorem. 

THEOREM 2'. If T is metrically transitive and \A\ > 0 then, 

(10) f n(o>)dn = 1. 
J A 

If we define the average Poincaré cycle relative to A as 

ftA _. _ ^ ^ I n(œ)dfX 

\A\JA 

we can restate (10) in the form 

ft A = 
1 

which is more reminiscent of (8). 
I t is clear that all one has to prove is that metric transitivity of T 

implies condition (7) which in the present terminology can be written 
as 

3 See C. Carathéodory, Über den Wiederkehrsatz von Poincaré, Berliner Berichte 
(1919) pp. 580-584. 
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lim f n (1 - f(Tko>)W = 0. 
n~»oo J ft fc^o 

Let B denote the set whose characteristic function is 

na-/(2*«)). 
We must prove that \B\ = 0. 

Consider the sets TnB. Since the characteristic function of TnB is 

f[ (i - /(ry>) 
k—n 

we see that the sets TnB form a nondescending sequence of sets all of 
which include B Moreover, | TnB\ =\B\. 

Let the set C be the limit of the sets TnB1 that is, 

C = lim TnB. 
n-»oo 

Clearly TC—C and hence, by metric transitivity, | C\ is either 0 or 
1, Since \c\ = | S | we have that either | B | = 0 or \B\ = 1. If | S | = 1 
then noticing that B is contained in the complement of A we would 
have | A| = 0 , contrary to the assumption. Hence |2?| = 0 and the 
proof of Theorem 2' is completed. 

An even shorter proof of the fact that \B\ = 0 can be given by ap­
pealing to BirkhofFs ergodic theorem. In fact, this theorem asserts 
(T being metrically transitive) that for almost all o) we have 

1 n 

lim — J2f(Tkco) = |i4| > 0. 
n->» n A;=l 

If o)EB thenf(Tkœ) = 0 and hence for all wEB 

1 n 

lim — Z / ( r y ) = o. 

Thus | j8 | = 0 . 
It should be noted that if T is not metrically transitive then a set A 

can be found such that \A\ > 0 and 

J n(œ)dfi < 1. 
A 

In fact, let D be such that 0< |Z>| < 1 and TD^D. Put A = Q,-D 
and note that in this case 
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lim f II(l-/(r*«))*i-|Z>|. 

This implies that 

f n(a)<*M = 1 - | i ? | < 1. 
J A 

4. Smoluchowski's definition of the mean recurrence time. In his 
important researches concerning the question of irreversibility in 
thermodynamics, Smoluchowski4 used a different definition of the 
mean recurrence time. He defines the mean recurrence time of the 
state a by means of the formula 

» 1 - W(a) 
(H) 0 Î - T — • 

In order'to justify this definition he considered an actual sequence of 
observations which consists of a's and <fs. He then defines the ob­
served mean recurrence time as r times the ratio of the number of â's 
to the number of unbroken blocks of d's. For instance, from the 
sequence of fifteen observations 

aaâaââaaâââaâaa 

he would find the observed mean recurrence time to be 7r/4. Denot­
ing by kn(a) the number of â's in a sequence of n observations and by 
ln(a) the number of unbroken blocks of â's in that sequence we see that 
the observed mean recurrence time is 

kn(a) 

Let furthermore kn(â, a) be the number of pairs of adjacent observa­
tions of the form (â, à). Then, 

L(â) - kn(â, a) 

if the sequence ends with a, and 

4 M. v. Smoluchowski, Drei Vortrtige iiber Diffusion, Brownsche Molekularbe-
wegungen und Koagulation von Kolloidteilchen, Physikalische Zeitschrift vol. 17 (1916) 
pp. 557-571 and 585-599, in particular pp. 564-568. 

The author was also fortunate to have had access to unpublished notes of Pro­
fessor G. E. Uhlenbeck, where many aspects of Smoluchowski's work were thoroughly 
analyzed. He is also indebted to Professor Uhlenbeck for many stimulating dis-
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h(à) = kn(â, d) + 1 

if the sequence ends with â. 
If, in the limit as n—> <», we replace (following Smoluchowski) the 

frequencies 

K{â) t kn(d, a) 
and 

n n 
by the corresponding probabilities 

W{a) = 1 - W{a) and W2(d1 a) = W2(a, a) 

we can replace (again in the limit as n—>oo) the ratio kn(â)/ln(a) by 

1 - W(a) 

Wtfaa) 

Smoluchowski considered the process of replacing limits of fre­
quencies by probabilities as self-evident. Actually he tacitly assumed 
the validity of certain laws of large numbers. Fortunately, Smolu­
chowski applied his definition mainly to the process of fluctuations of 
concentration for which the necessary laws of large numbers can 
easily be established. 

Smoluchowski's definition can be also introduced in an "a priori" 
fashion by setting 

CO 

(12) 6a = X (* + l)rP*+s(a, â\ â, • • • , à, a). 

It can then be shown using (2) and (7) that 

* l - Ï F ( f l ) l - T T ( o ) 
\lo) 0a = r = r -— • 

W2(a, a) W2(à, a) 
It is well to point out that in accepting this definition we agree not 
to count as a recurrence the event when a state is followed by itself. 

By giving an "a priori" definition we have not eliminated the 
necessity for laws of large numbers. In facts, laws of large numbers 
are indispensable whenever we want to check predictions based on "a 
priori" results through calculations performed on actual sequences of 
observations. 

The advantage of Smoluchowski's definition can be best appre­
ciated if we consider the situation in which the random variables xn 

are derived from a continuous stochastic process x(t). In fact, in 
most applications 
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xn = x{nr). 

In many cases the limit, as r approaches 0, of 

W2(a, a) 

exists and is different from 0 (note that now Wi{a, a) depends on r ) . 
Thus it is often possible to define the mean recurrence time in the 
limit as observations are taken continuously. 

If we use the definition of §2 we always get in the limit as r—»0 
the trivial answer 0. The reason for this is quite obvious, inasmuch 
as for small r the probability of a state being followed by itself is very 
close to 1 and consequently too much weight is attached to what after 
all is only a fake recurrence. 
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