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The theoretical basis underlying the following electromechanical 
investigations concerns a simple integral representation of the Rie-
mann zeta function in the critical strip. To the right of the critical strip 
( R e s > l ) we have the usual expression: 

(1) T(s) -t(s) = f x-ldx, Re s > 1. 
Jo ex — 1 

Subtraction from (1) of 

ƒ» 00 

e-axxs-2dXj Res> 1, Re a > 0, 

0 

yields 

(3) T(s) • h(s) } = I ( ) %*-Hx, Re ^ > 0. 
( 1 — sj J o \ e * - l x / 

In the integrand of (3) the simple pole at # = 0 of (ex~-\)~l is com
pensated by the simple pole with the same residue of x^le~ax. There
fore (3) already converges in the wider band Re s > 0 . If we now re
strict 5 to the critical strip 

0 < Re s < 1 

we can let a—»0 in (3), so that we obtain the basic integral 

(4) T(s)-t(s) = f ( ) x-Wx, 0 < Re 5 < 1, 
Jo \ ex — 1 x / 

this being the analytical continuation of (1). 
The representation (4) of the zeta-function in the critical strip 

enables us to derive the functional equation of the zeta-function in 
an extremely simple way. To this end we make use of Legendre's 
relation1 

f00 1 1 1 1 1 x 1 
(5) 2 I sin xt Jt = \ = — coth 

Jo < ^ < - 1 - * ~ ex ~ 1 x 2 2 2 x 

Received by the editors March 18, 1947. 
1 See, for example, Whittaker-Watson, Modern analysis, 4th éd., p. 122. 
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which is valid for all real values of x; furthermore both sides of (5) 
represent an odd function of x. We now restrict x to positive values 
and subtract 

/

dt 1 
sin xt = — 

o 2irt 2 

from (5), so that (5) assumes the self-reciprocal form 

/ •" / 1 1 \ 1 1 
(6) 2 I sin xt ( J dt = > x > 0. 

J o V ^ - l 2irt/ e*~l x 
Substitution of (6) in (4) yields 

which, with the substitutions 2irt = r and # = 27r£/r, becomes 

(2TT)« r °° sin£ r °° / 1 1 \ 
(7) r(s) -r(5) - - ^ - — 7 « . I ( — — ) r ^ r . 

The latter integral has the form of (4), s being replaced by 1—-s, 
while the former integral is of a well known type. Hence we obtain 

(2ir)' ƒ•" sine 

7T J 0 ^~* 

1 (2x)-
. r ( i - 5 ) r ( i - * ) 

2 r ( l - 5 ) - c o s ( « / 2 ) 

or 

7T5 1 

cos — . r ( , ) . f ( , ) = _ (2*)-f(l - 5). 

This is the functional equation, which, by analytical continuation, is 
valid in the whole s-plane. 

Returning to (4), we notice that this equality can be written as 

f J2 e~nx - I e-"*dv\ x'-ldx (0 < Re s < 1) 

(8) 
/» oo /» oo 

= I I eruxd([u] - u)-x*~ldx. 
J o J o 

It is evident from (8) that the zeta-function in the critical strip is 
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generated by the difference of a sum and an intégral. I t therefore 
seems not unlikely that the typical difficulties associated with a study 
of this function in the critical strip are closely related to this fact. 

We now integrate the central Stieltjes integral by parts, as 

(8») 
/

I 00 | 00 /» 00 

<ruxd([u] - u) = e~ux([u] - u)\ + x I ([u] - u)eru*du 
0 10 J 0 

/

> 00 

([u] — **)e 
0 

*dw. 

Substitution of (8a) in (8) and writing x = £/u yields 

o Jo u8+1 Jo u*+1 

or 

(9) 
1 r °° \u\ - w 

— f (s) « I — du, O < Re s < 1. 
5 J o U*+1 

Finally, calling u = ex and taking s = l/2+it, we obtain from (9) as 
an expression for f (s) on the critical line Re 5 = 1/2: 

{•(1/2 + #) z»00 

(io) — = I {«-•/*[«•] - **>2} .*-«•«<**. 
1/2+ ô J_ 00 

With (10) the investigation of the zeta-function on the critical line 
is reduced to a problem in the real domain which can be attacked 
with physical methods. I t is therefore on (10), which has the form 
of a Fourier transform, that we based our experiments. 

The function 

(11) 

of which 

y(x) = e*'2 - e-*i*[e*\, 

_ ttX/2±U) 
1/2 + it 

is the Fourier transform, is represented in Fig. 1. (See insert opposite 
p. 980.) It is a sawtooth-function, of which the height of the teeth 
varies exponentially, the width of the wth tooth being given by log 
((n+l)/n). Further we have 

0 ^ y(x) ^ 0-1*1/2, _ oo < x < + oo, 

which ensures the convergence of (10) for all real values of /. 
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Thus the experimental problem consisted of constructing an elec
tro-mechanical machine giving the Fourier integral of the function 
y(x). This however was found to be impracticable and therefore we 
resorted to obtaining experimentally the modulus of the Fourier 
series for y(x) modified in such a manner that y(x) was taken to 
extend only from Xi= —9.00 to x2 = +9.00, being zero outside these 
limits. The remaining function was thus repeated indefinitely. It 
may be noted that the amplitude of y(x%) and y(x%) at these limits is 
only exp ( — 9/2) = .011, so that the error involved is certainly small. 
The problem thus having been made periodical, it was easy to intro
duce rotating machinery. For this purpose the function (cut off in 
this way) was very carefully drawn on paper. This was done radially 
along the circumference of a circle having a radius of a = 13 cm. (the 
transformation being r—a~y(aÇ)). Thereupon it was cut out as 
accurately as possible. The resulting paper disc is represented in Fig. 2. 
Thus the first tooth had a width (log 3—log 1) corresponding to 
to about 1/26 of the circumference of the circle. The last tooth 
which it was practicable to cut out was the 35th with a width of 
(log 36—log 35), corresponding to about 1/621 part of the circum
ference. This paper disc was clamped perfectly flat between two 
aluminum discs, the paper teeth extending well outside the metal 
discs. This assembly was mounted centrally on the shaft of a syn
chronous motor. The motor was driven at a frequency of 25.018 
revolutions per second by an amplifier behind an electrically controlled 
tuning fork of 1000,72 c/s, the frequency of the current from the 
tuning fork being demultiplied with the aid of relaxation oscillations 
in the ratio of 40 :1 . This tuning fork drive ensured a much greater 
precision in the angular speed of the synchronous motor than could 
be obtained by using the mains. 

With the aid of cylindrical lenses a beam of light was projected 
onto the paper teeth in a direction parallel to the axis of the motor. 
The cross section of the beam was a long, very narrow rectangle, 
with the longer side oriented radially. The light thus passed by the 
teeth of the disc fell upon a photocell, causing an electric current 
which was an exact replica of the form of the teeth of the disc and 
therefore of the modified function. This current was amplified and 
a strong sinusoidal current was superimposed thereon, the frequency 
of which was made to vary very slowly in an approximately linear 
manner from 0 c/s to 15000 c/s in about 12 hours, the law of this 
variation having been previously determined. Further, an effectively 
quadratic push-pull detector (selenium cells) was inserted in the cir
cuit, producing difference-tones between (a) all the harmonics pro-
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duced by the rotating disc and (b) the applied sinusoidal current. 
These difference-tones were fed to a very sharply tuned electro
mechanical vibrator with a natural period of 7.00 c/s and a loga
rithmic decrement of .0143. The variation of the frequency of the 
applied sinusoidal current was necessarily slow, in order to be sure 
that the current through the mechanical vibrator went through 
"quasi-stationary" states.2 Thus, when the applied sinusoidal cur
rent had a frequency exactly 7.00 c/s greater or smaller than one of 
the harmonics generated by the teeth on the disc, a difference-tone 
was produced which excited the mechanical vibrator. The oscillations 
of the latter were translated, in a separate circuit, as an electric cur
rent which was rectified (giving the modulus of the function) and 
which was registered by a recording milliammeter. The recording 
paper of the latter moved with a speed which was also controlled by 
the same tuning fork. Hence the meter recorded a series of spectral 
lines situated in pairs, one of each pair being 7 c/s to the left, and 
the other 7 c/s to the right of each harmonic present in the function 
produced by the rotating disc (fig. 2), which, itself, represents the 
function y(x) of (11) (made periodical), the modulus of whose Fourier-
transform is 

(12) 
r(i/2 + U) 

1/2 + it 

Fig. 3 is a direct unretouched reproduction of the record thus ob
tained of (12). From the accurately known constants of the apparatus 
it was possible to mark the values of / shown at the top of the record. 
The abscissae marked a t the bottom with a | represent the 29 ac
curately known zeros of J*(l/2+i/), which were taken from Jahnke-
Emde, Funktionen tafeln (zweite, neubearbeite Auflage) p. 324.3 

It is seen that all these 29 zeros appear in this record either as very 
deep minima (namely, the zeros no. 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 16, 
18, 20, 21, 23, 27, 29), or in any case as less deep, but none the less very 
decided minima (namely, the zeros no. 9, 14, 15). It is further seen 
that the value of the recorded zeros coincide with those calculated 
with an accuracy better than 1%. 

In order that the recording for the larger values should not be too 
small, the sensitivity of the apparatus was increased 4-fold from 2 = 35 

2 Balth. van der Pol, Journal of the Institution of Electrical Engineering (London) 
vol. 93 (1946) p. 153. 

3 For the number of zeros on Re 5=1/2 up to 2 = 1468 see E. C. Titchmarsh, Proc. 
Roy. Soc. London Ser. A vol 151 (1935) p. 234 and vol. 157 (1936) p. 261. 
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FIG. 1. A graph of the sawtooth function y(x) -exl2—e-jcl2[ex\ 

FIG. 2, Paper disc, showing the sawtooth function y(x) for the range — 9<#<-f9 . 
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onwards, as indicated in the record, so that for / > 3 5 , the recorded 
amplitude is 4 times larger than in the range / < 3 5 . 

The first 29 zeros of f ( l / 2 + i / ) are to be found in the range 
0 < / < 1 0 0 . However it was practically possible to extend the record
ing up to 2 = 210. Up to this point the record shows a total of 73 
minima which most probably may be interpreted as zeros, the more so 
as all the pronounced minima of the envelope of the curve for t < 100 
correspond to known zeros. 

As to the modulus, attention may be drawn to the fact that the 
record does not show | f (1/2+it)|> but shows this function divided 
by | l / 2 + * / | , s e e ( 1 2 ) . 

It is of interest to remark that our record shows that there seems to 
be no simple relation between the difference between successive zeros 
and the height of the maximum between them. For example, the 
height of the maximum between the 20th and 21st zero is consider
ably smaller than that between the 17th and 18th, although the 
interval between these pairs of zeros is not very different. The experi
ments carried out so far, and in which harmonics beyond the 600th 
were measured (the highest harmonic recorded corresponded about to 
the width of the last tooth cut in the paper), were performed with 
relatively limited means, and it is felt that many improvements 
could still be applied, such as: 

(a) assuring a still more constant speed of revolution of the syn
chronous motor; 

(b) determining the effect on the record of the number of teeth 
cut in the paper disc, and so on. 

Therefore, with the modern technical means available, the present 
method of exploring the behavior of the zeta-function in the critical 
strip (which is closely related to Riemann's conjecture), seems ca
pable of improvement with regard to precision. Further, a considerable 
extension with regard to the number of zeros recorded, including 
those, if any, outside the line Re 5 = 1/2, seems possible by this 
method. 

Finally I wish to thank Mr. C. C. J. Addink for the great care and 
skill with which he performed the experiments. 

Note added in proof (October 6, 1947). The less deep minima as in 
Fig. 3 were later on found much deeper when in further experiments 
the angular frequency was kept more homogeneous. 

PHILIPS LABORATORY, EINDHOVEN 


