A GENERALIZATION OF STEINER’S FORMULAE
E. VIDAL ABASCAL

Let C be an arbitrary convex curve in the plane of length L and
area F; and let C, be a curve parallel to C at a distance p from it, of
length L, and area F,. Then according to Steiner’s classical result:

L, =L + 2mp, F,=F + pL + mp%

In this paper we develop a generalization of these formulae for
curves lying on a curved surface whose curvature K(v!, v?) (referred
to geodesic parallel coordinates) is a function of »2 alone. Explicit
formulae are derived in the case of surfaces of constant curvature. In
this treatment it is necessary to put certain restrictions on the curve
C and the distance p to replace Steiner’s assumption of convexity.
These restrictions (which are discussed below) are stated in their
most obvious form, and a discussion of methods of relaxing them is
deferred to a later paper. Our chief results are contained in the
formulae (12) and (15) below.

Let the curve C be a simple, closed, bounding, and differentiable
curve on the surface S. Choose a coordinate system in which 9'=0
is the curve C, and in which »2=constant are the geodesics orthogonal
to C. Further let v? be the arc length of C measured positively for
motion on the curve which keeps the bounded area to the left, and
let o' be the arc length of geodesics normal to C measured positively
outward from C. Choose the unit normals to C so that they point
toward the interior of C. Then we have:

(1 ds* = (dv")? + ga(v!, 09)(d0")%;  g2s(0, %) = 1.

For the moment we ignore the question of determining the region
of S within which such a coordinate system is valid, and proceed to
compute (gs2)!/2. In this coordinate system we have the following rela-
tions (see L. P. Eisenhart An introduction to differential geomeiry,
pp. 181 and 188)

92(gas)1/2
¢)] “agton + K(ge)V2 =0,
9 1/2
® eo(0?) = [—(—g~)—] ,
v vl=0
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where k, is the geodesic curvature of C.

We assume that K is a differentiable function of 9%, that it is inde-
pendent of !, and that it is never zero. Then the integration of (2)
gives:

@ (' = f(o?) sin [(K@)"?] + k(") cos [#H(K(2%)'"2].

If K(v?) is negative, complex numbers are introduced, and f and &
must be so chosen that the resulting value of (ge)/? is real. From
(3) we find that

k(0% = {f(o) (K@) cos [v1(K(17)""?]
— h() (K@) sin [o1(K(2%))/2]} yimo
or k,(v?) =f(v2)(K(v?))V2. Hence

®)

k(2%
(K@)’

Furthermore equation (4) must be valid along C, on which #'=0
and (gg)V2=1. Therefore from (4), k(v?)=1. Hence:

k(2%

(K(@))**

The chosen coordinate system will fail to be wvalid whenever
(1) (ge2)¥?=<0; or (2) when 9! is so large that the region described
overlaps itself. The second difficulty may be overcome by considering
overlapping portions to be on separate covering sheets of S (as in a
Riemann surface), but we must assume that (gs)!2>0. We let C,
be the closed curve v! =p (const.) and restrict ourselves to the interior
of C,. Hence we require that:
®) o) BRG] + cos RG] > 0

(K@)
for all 92 and for 0 =9* <p. Without further assumptions on K, k,, and p
no simplification of (8) is possible. However, for constant K the
validity of (8) may be inferred from other simple assumptions as
follows:

Case 1. K =constant >0. Then if x,(v?) >0 and 0 =<p<72KV? each
term of (8) is positive, so (8) holds.

Case 2. K =constant <0. Then (8) can more properly be written:

k(2%

(8" Ton sinh [ot(— K)!/2] + cosh [ot(— K)!/2] > 0.

(6) f@?) =

(N (g)'? = sin [o/(K(09)"2] + cos [#H(K(9)2].
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And here if «,(v?) >0 and p =0, the inequality is valid.

These are the assumptions which correspond to Steiner’s require-
ment that C be convex, and henceforth we consider only curves C and
values of p for which they are verified.

Then from (7) the length of C, is given by:

= 22(p, v%))1/2dp?
© L, fc<g (o) o) 1/%dp
or
— xq(07) : N\1/2] 702 2N\1/2] 702
10 1= [ o sin @) e + f “cos [o(RG) st

(We note that (10) holds even if C does not bound. However, the
assumption that C bounds is essential for further developments.)

When K is constant, (10) may be simplified by the use of the
Gauss-Bonnet formula:

(11) f k,(v)do? = 2r — K f f (g20)1/2dv'dv? = 21 — KF.
C Interior of C

Hence
sin [pK1/2]

12) L,=2x K

— FK'2 sin [pK'/2] 4+ L cos [pK!/2].

When K is negative (12) may more appropriately be written:
sinh [o(— K)?]

az) T (=g
+ L cosh [p(— K)¥2].

We note that as K—0, (12) and (12’) approach Steiner’s formula.
Finally to find F,, the area of C,, we consider

(13) F,=F + fc {fop (gaa(2t, vz))”zdv‘} dv?

or

+ F(— K)2 sinh [p(— K)'/?]

F,=F+ f { f " et S [H(K )] dvl} dv?

(K@)

+fc{fopcos [vl(K(v2))1/2]dv‘} do?,

(14)
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When X is constant, (14) simplifies as follows owing to (11):
sin [pK1/?] (cos [oK2] — 1
— 27

(15) F,=1L Xin %

) + F cos [pK/2].

When K is negative (15) may more appropriately be written:
F,=1L sinh [p(— K)'/?] o (cosh [o(— K)12] — 1)
(_ K)1/2 K
+ F cosh [p(— K)'2].

(15

We again note that if K—0, formulae (15) and (15’) approach
Steiner’s result.
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