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4.1 Remarks. Suppose that the hypothesis of a theorem involves 
convergence (a). I t may happen (and does indeed in the case of all 
theorems in [S]) that convergence (cri) may be substituted in the 
hypothesis as follows: each ovregion which occurs in the proof is a 
(Tn-region for some n\ if there is a largest such n call it N. Then con­
vergence (aN) may be substituted in the hypothesis and may, by 
Theorem I, be replaced by convergence (<ri). Lemma 10 is an example 
of an exception to this statement; there is no largest n and conver­
gence (a) is essential. 

If a series is convergent (<ri) then, for a given n, the series is con­
vergent ((Tn). Hence, given € > 0 there are indices (p, g) such that 
1^4—^(7^)1 <e for every crn-region R which is a region (p, q). In 
general (p, q) will depend on n; if the choice does not depend on n 
then the series is convergent (a). 
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The problem of representing a one-parameter group of operators 
(that is, a family T^ — oo < £ < oo, of bounded linear operators on a 
Banach space which satisfies T^+f = T{T^) reduces according to several 
well known methods of attack to establishing differentiability of the 
function T$ at £ = 0. The derivative Ax — Mm^ ^l(T^ — I)x exists as 
a closed operator with domain D(A) dense, providing T$ is continuous 
in the strong operator topology (that is, lim^Tgc = T^x, xE3Q. I t 
is then possible to assign a meaning to exp (£4) in a natural way 
and so that jT$ = exp (&4), — oo < £ < oo. The operator A is bounded 
if and only if Tç is continuous in £ in the uniform operator topology 
(that is, lim$^0 | T^ — T^\ = 0) in which case A = l i m ^ 0 ^ ~ 1 ( ^ — I) ex­
ists in the uniform topology. This implies that T^ is an entire function 
of £; conversely, if T$ is analytic anywhere, then A is bounded. These 
considerations extend to the semi-group case in which T$+s=T{Ts is 
known to hold only for positive values of the parameters, although 
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the number of distinct cases is much larger and, in particular, ana-
lyticity does not imply that A is bounded. 

I t is a matter of natural curiosity to ask whether or not similar 
results hold if the semi-group law ƒ(£+£) ^ ƒ (£)ƒ({") *s replaced by an 
arbitrary addition formula. The results presented in the following cor­
respond to the case of an analytical group (that is, continuity in the 
uniform topology). The strong operator topology leads to particular 
difficulties which have been overcome only in part, but we hope to 
return to this case on a future occasion. 

In this note we consider the differentiability and uniqueness of con­
tinuous solutions ƒ(£) of the equation 

(i) m + f) - G[/(o, /M o s & r, « + r s «, 
where G [a, j8] is a symmetric complex function analytic for a, j3 in 
the closure of a domain A bounded by a rectifiable Jordan curve. The 
solutions considered are f unctions ƒ (£) on 0rS£â<o to a commutative 
complex Banach algebra B with unit e. We define G[u, v] only for 
those u, vÇzB(A), the subset of B consisting of elements x whose 
spectrum axQA. For such w, v we define G[u, v] by the double resol­
vent integral 

(2) G[u, v] = —-— f f G[af p]R(a, u)Rfa v)dadp, 
(2irt)ZJYU J VV 

where i?(a, u) = (pee — u)~~l and TM, Tv are oriented envelopes in A of 
au, crv respectively. Thus by a solution of (1) is meant a function ƒ(£) 
on O g ^ c o to 5(A) which satisfies (1). 

THEOREM. If ƒ(£) is a continuous B-valued solution of (1) and if 
Gi[/(0) , / (0)] has an inverse (Gi[a, p]=*(d/da)G[a, j3])> then f (0 has 
derivatives of all orders and ƒ'(£> =Gi[/(0), ƒ(£)]ƒ'(0). If g(£) is any 
other continuous solution of (1) with g(0) =/(0) and g'(0) = / ' (0) , then 
g(£) =ƒ(£). If $(£) is a nonconstant scalar analytic solution of (1) then 
the only continuous B-valued solution of (1) with /(0)=<£(0)e is given 
by f(%) —<t>(J'(0)i;) in a neighborhood 0 ^ £ = P -

LEMMA. Let Q[a, 0, y]-{G[a, 7 ] -G[ j8 , 7 ] ) ( « - j 8 ) - \ <*, 0, 7GA. /ƒ 
ƒ(£) is continuous on 0 g £ ^ c o /<? 5(A) and Ogrç, f gco /Aew uniformly 
with respect to f we have 

(3) lim 6[ƒ(£), /(i,), / (f)] - Gi [ƒ(»), /(f) ], 

(4) Q(w, v, w){u — v) = G(w, w) — G(z>, w), u, v, w £ -B(A). 
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First note tha t since ƒ(£) is continuous in [0, co] the range of ƒ(£) 
is a closed connected compact set RQB(A). If # = Uc#, x(~R, then 
$ is a closed subset of A and if T is an oriented envelope of <£ in A, 
then R[a, ƒ(£)] is a continuous function of (a, £) for a G T , 0^£^co . 
There is consequently a finite positive constant M ~M(T) such that 

(5) | R[a, ƒ(£)] | g M(r ) , a G r , 0 SS É £ « . 

Further, lim^i?!**, f(£)]=sR[ot, ƒ0?)] uniformly with respect to a 
on T. I t follows that uniformly in f, Ogf gco, 

lime[/(Ö,/(i»),/(f)] 
£ - 1 

= - TT" f f f G[«, ft 7]*[«, M ]R \P, f in) ]R b, fit) ]dadpdy 
öir6t J v J r J r 

= ~̂7T I I I 6(«. 0> 7) R[y,f(fi\dadpdy 
8ir3i J TJ rJ r a — p 

= J-J ƒ «Wfr, /(»]{ƒ «*ftT)«h*>]fa 

-^./wij * ^ > 4 . 
J r a —• p ) 

Here I \ Ti, are oriented envelopes of $ in A and Ti is interior to I \ 
Now 

ƒ' GO*, ft y) 
— —da = 2irfQ(ft ft 7) = 2x«Gi(j8f 7) 

r a — a • 1 8 

so 

limQlrtO./G»),/(f)] 
f - 1 

Here 

ÖTT*l J Ti J Tx J T (X — ft 

- r V f ^J2[T,/«-)] f <*«*[«,/W] f Q{a,^]] dp. 
8ir*t J Tx J r J Tt a — p 
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But for a £ r the last integral is zero so U = 0. This completes the 
proof of (3). Equation (4) may be proved in a fashion analogous to 
the method used for establishing the multiplicative law in the opera­
tional calculus involving functions of one variable. 

We now proceed to the proof of the theorem. From the contour in­
tegral definition of G\ [f (0), ƒ(£*) ] we see that it is continuous in f and 
hence 

lim - f *Gi[/(0)f / ( f ) ] # = Gi[/(0), /(O)]. 
a-*0 OL J 0 

Thus we may fix a <w so that the integral on the left has an inverse 
in B. From the lemma we have 

lim - f "<2[ƒ(£), /(O), /(f)]«*f = — f aGt[f(0), /(f) ]#. 

Hence 

(6) 

lim ( i f "of/CO,/(O), ƒ«-)]<#} X 

{7/"Gi[A°>'/G">]#} '• 

From (4) we have 

(7) [ƒ(£) - /OOM/CÖ, f(v),f(?)] = G[/(a /(f)] - G\fin), /(f)J 

whence 

4- Ko - /(o) 1 - f "et/Cö, /(o), /o-)]# 
Ç a J 0 

= - f " T {G[/(Ö./(f)] -G[/(0),/(f)]}df 

(8) = ^ f a [ / a + f)-/(f)R 
a? J 0 

- *—[ƒ(« ) - / (0 ) J asi->0. 
a 

Thus (6) and (8) give the existence of 
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lim-J- L/tt) -M] = \~ f aG1[f(o),/(rtRJ-1 - [ƒ(«) - /(o)]. 

Thus ƒ(£) is differentiable at £ = 0. Applying the lemma once more we 
have 

- [ƒ(£ + v) - M) ]=-{G [f(v), ƒ«) ] - G [/(0), ƒ(£) ]} 

= -[f(v)-f(0)]Q[f(v),f(0),M)i 
V 

uniformly for 0 ^ £ ^co. The existence of the higher derivatives is read­
ily established. We shall indicate the argument for the case of the 
second derivative. We have 

n® = /'(0) —!— f f Gx [«, p]R [a, /(O) ]R [p, ƒ(£) ]<Z<*̂ . 

It is readily shown that uniformly for /3 on T we have as 77—>0 

- {*[/?,/ft+ 1?)] - RfafiQ]} -> -/'ft){*|j8,/ft)]}2. 

Hence 

and a contour integral argument of familiar type shows that this expres­
sion equals ƒ'(0)/ '(Ê)Gu|/(0), ƒ « ) ] where Gu[a, j8] = (ô2/3aô/3)G[ce, j8] 
and Gn(Uj v) is denned by the usual contour integral for u, z;£i3(A). 
We see in particular that /"(O) = [/'(0)]2Gn[/(0), / (0)] and hence is 
uniquely determined by /(O) and / ' (0 ) . Similarly it may be shown that 
all higher derivatives exist and are uniquely determined by ƒ(0) and 
/'(O). 

Now suppose that g(£) is another continuous solution of equation 
(1) with g(0) =/(0) and g'(0) = / ' (0 ) . From the preceding remarks we 
see that g(n)(0) =/ ( n ) (0) , w = l , 2, • • • . From the contour integral 
representation of the function Q [ƒ(£), g(£), ƒ(??) ] combined with (5) we 
see that there is a finite K = K(f, g) such that for 0 ^ £, rç ̂ co 

Since 
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G[f(0,f(r,)]~G[gQ),f(v)] - Q[f(0, g(&,/0») ][ƒ<*) - f(Ö] 

we have 

(9) |G?£fCO./Ci)] - Gktt). ƒ « ] I ̂  if I [ƒ«) - s(8] I 

and a similar inequality in which/, g and £, 77 are interchanged. Plac­
ing A(£) =ƒ(£) -g(£) we have 

*tt + 1) = ƒ(£ + 1») - «tt + n) 
= G[/œ,/(n)]-G[g(?),fW] 
«GtAo./wi-Gbca/to] 

+ Gk(ö,Ai»)]-Gk(ö,g(i»)]. 
Hence from (9) we have 

I *tt + u) I S K{ |/(Ö - g(Ö | + I/O,) - g(„) | = K{ | A({) | + 1 AG») 11 

whence 

|A(2Ö| £2K\k(Q\. 

By repeated use of this inequality we get 

(10) h(0 S (220-1 K£2—) |, m « 1, 2, 3, • • • . 

Now consider 

*.(0 - *(0 - Ê s("(o) -^ 

and let 

MM = max | fo
w(0 | - ma> | * w ( 8 - s<B>(0) | 

in the interval [0, co]. Since 

0 t / o " 0 

we have 

Since 

I *tt) I = I /(Ö - 5(0 I - I ƒ»(£) - *.(*) I è | ƒ»(£) | + | s„(Ö |, 
we see that | A(£)| ^2^nMn/n\t where Mn is the larger of Afn|jf] and 
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ilfn[g]. A combination of this inequality with (10) yields 

i . 2 

| h(Q g — MnU^-nR)™, 0 £ £ g a>, m, n = 1, 2, • • • . 
n\ 

Here we fix n so that 21~n2£<l. Since m is independent of n and may 
be taken arbitrarily large we see that h(£) s 0 and thus that g(£) =ƒ(£), 
0g£ga>. 

Suppose now tha t 0(£) is a nonconstant analytic scalar solution of 
(1). Since 0 is analytic at f = 0 we have 0(f) «]C a »f n | t\ <P a n d 

(11) 0(fx + f2) - G[0(fi), «(fa)], | fi |, |f» |, | fi + ft1 < P. 

Differentiating 0(f) =G[0(f) , 0(0)] weget0 ' ( f )«0 ' ( f )Gi[0( f ) ,0(O)] 
and since 0'(f ) ̂  0 we have Gi [0(f), 0(0) ] ss 1 and, in particular, 

Gi[0(O),0(O)] = l. 

Differentiating (11) by parts with respect to fi and putting fi = 0 in 
the result one gets 

* ' ( Ö - * ' ( 0 ) G i [ * ( 0 ) , * ( Ö ] 

whence 0 ' (O)T*O. But if 0(f) satisfies the conditions stated so does 
0(«f) for any a9*0. We can consequently normalize 0(f) by assuming 
that 0'(O) = 1. Suppose now that ƒ(£) is a continuous, and hence 
differentiable, solution of (1) such that /(O) =0(O)e, /'(O) = a . Then 
Gi[/(0),/(O)] =Gi[0(O), 0(O)]e = e and hence it has an inverse. On the 
other hand the function 0(af) is given by the series X/*n0nfW a t least 
for | f | <p/\ a\ and for such values of f we have also <r0(af) =0(f<ra) 
CA since \<ra\ 2 i | a | . From the construction of the series and the 
properties mentioned it follows that it satisfies (1) for | f i | , jf»!» 
| f i + f i | < p / | a | . Further, 0(0) = 0 ( 0 ) ^ / ( 0 ) , 0'(O) « a «/'(O) and 
thus / (£ )=0(a£) . 
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