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LINEAR TOPOLOGICAL DIVISION ALGEBRAS 

RICHARD ARENS 

1. Introduction^We present a generalization of the familiar theo­
rem of Frobenius that any finite-dimensional linear division algebra 
A over the real number field is isomorphic to the real, the complex, 
or the quaternion number system. The generalization consists in re­
placing the hypothesis of finite dimensionality of A by the weaker 
hypothesis that A be a complete linear space with a topology in which 
multiplication is continuous and which is based on a countable system 
of convex open sets. 

Previous generalizations of Frobenius , theorem have been indicated 
or proved by S. Mazur [ó],1 G. Silov [8], and I. Gelfand [4]. These 
writers have generally assumed that A have a norm ; and only that 
case has been adequately considered in which scalar multiplication by 
complex numbers is assumed. We shall give the proof of the general 
case without limiting ourselves to the commutative case or to com­
plex scalars. 

Presented to the Society August 23, 1946; received by the editors November 20, 
1946. 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
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In the presence of a norm, the operation of inversion, that is, the 
passage from x to x~~x in A, is easily seen to be analytic (in a sense de­
fined in [4]) and an application of the Liouville theorem establishes 
that A is the complex number system. In connection with non-
normed algebras one is hampered by the fact that inversion need not 
even be continuous on the set of nonsingular elements. In other words, 
that part of a topological ring which forms a multiplicative group 
need not be a topological group in its relative topology: a discussion 
of this follows in §4. However, in complete separable metric division 
rings, inversion is nevertheless continuous on the set of nonzero ele­
ments, as a result of a theorem on topological groups due to D. Mont­
gomery [7]. Because of this, an adaptation of Gelfand's method can 
be made which establishes our Theorem 3. 

In a section devoted to integral domains we generalize slightly a 
theorem of Silov [8] without being able to avoid hypothesizing a 
norm. We justify this limitation by exhibiting the peculiar proper­
ties of the ring A of functions holomorphic on an open set. This is a 
complete metric convex linear algebra and is an integral domain, 
even in a strong topological sense. Its existence with these properties 
shows that Frobenius' theorem formulated in terms of integral do­
mains does not generalize as readily as the statement above in terms 
of the existence of inverses. The most remarkable property of this 
ring of holomorphic functions is probably the fact that the set of 
singular elements is open and not closed as is the case in complete 
normed rings. 

2. Topological division algebras. A topological algebra A is a topo­
logical linear space in which not only addition and scalar multiplica­
tion by real numbers, but also multiplication of elements of A is de­
fined, and in such a manner as to be continuous. If scalar multiplica­
tion by complex numbers is defined as well, we speak of a complex 
topological algebra. We call A a convex topological algebra if it is 
convex as a topological linear space (see [lO]). If the topology of A 
can be given by a metric structure, we call it a metric linear space; and 
we say A is complete if it is a complete metric space. An important 
special case of convex complete metric algebras is presented by the 
so-called normed rings [4], otherwise known as Banach algebras. 
Theorem 2 below is known for commutative complex Banach algebras 
[4, p. 8] . Many devices introduced by Gelfand will be recognized in 
our proofs. 

By a topological division algebra we mean one which possesses a 
unit 1 and a two-sided inverse x~x for each nonzero element x in it. 
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The following theorem is a convenient starting point. 

THEOREM 1. Let A be a convex complex topological division algebra 
with continuous inversion. Then A consists only of scalar multiples of 
the unit element and is thus isomorphic with the complex number field. 

PROOF. If possible, select an element x from A which is not a scalar 
multiple of 1 Ç.A. Since A is convex, there exists a continuous, linear, 
real-valued functional ƒ defined on A and such that fix"1) 9^0 [10, 
p. 162]. Define g(z)=f(z)-if(iz) for any z^A. Then g(\z) =X(g(») 
for both real or complex X. The function hÇk) =g[(#— X)""1] is defined 
and continuous for any complex number X because x is such that 
x—XT^O for any X. From the relations 

AG*) ~ ft(X) = g[(x - /,)-* - (* - A)"1] 

= g[(x - fx)-1^ - X - x + n)(x — X)-*1] 

we can deduce that h(K) has a derivative A'(X) =g[(x--X)~2]. There­
fore h is an entire function. Moreover, as X—•» <x>, we evidently have 
ft(X)—»0, whence &(X)==0. This contradicts ƒ ( a r 1 ) ? ^ . Therefore each 
x in A is a scalar multiple of the unit of A. 

If the division algebra A arises as the quotient algebra of a complex 
Banach algebra, one can easily verify the hypothesis of Theorem 1. 

The following considerations will enable us to drop the hypothesis 
that the topological algebra A admit complex scalars. 

Let us call A formally real if A is commutative and x2= —y2 in 
A implies x, y = 0. Let A (i) be the class of all ordered pairs ; and denote 
the pair (0, 1) by the symbol ui." Then each element of A(i) can be 
written in the form x+iy; and algebraic operations can be defined in 
A(i) in an obvious fashion such that i2= — 1. It is clear that complex 
scalars can be applied to A (i). Let TJbea system of neighborhoods U 
of 0 in A ; then let us take the totality of sets U+iU, UÇzV, as a 
system of neighborhoods for 0 in A(i). One can readily verify that 
A (i) is a complex topological algebra ; that A (i) is convex or complete 
if and only if A is ; tha t it is an integral domain or a field if and only 
if A is ; and that inversion is continuous in A (i) if it is in A. 

These concepts having been introduced, we proceed to the case in 
which only real scalars are required. 

THEOREM 2. Let A be a convex topological division algebra with con­
tinuous inversion. The A is isomorphic with either the real, the complex, 
or the quaternion field. 
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PROOF. Commutative case: If A is formally real, then the construc­
tion of A (i) can be carried out, yielding a convex, complex, topologi­
cal algebra, with continuous inversion. By Theorem 1, A(i) consists 
only of scalar pairs; therefore A consists only of real multiples of the 
identity. 

If A is not formally real, let x 2 = —y1 with x> y5*0. Define j^xy"1. 
Next, scalar multiplication by complex numbers a+bi can be de­
fined, by (a+bi)z = az+b(jz)> for zÇ^A. Theorem 1 now tells us that 
A is the complex number field. 

General case: The center Z of A comes under the previous case, and 
is therefore the real or complex field. Let x be selected outside of Z ; 
and let X be the division sub-algebra generated by x over Z. Since 
this is still commutative, we may conclude that x satisfies some poly­
nomial with coefficients from Z (and, in fact, of degree not greater 
than 2). Hence A is a division algebra algebraic over the real number 
field. The argument is now completed by an appeal to the following 
lemma, whose proof can be conducted in the same way as that of 
Frobenius' theorem for algebras of finite order (dimension); or one 
may refer to a recent result [5, Theorem 16]: 

LEMMA. An algebraic division algebra over the real number field is 
either the real, the complex, or the quaternion field. 

The requirement that inversion be continuous in A is troublesome, 
although of course it is necessary. The most convenient way of insur­
ing it is to suppose that A can be given a norm having the property 

IMIsMIIHI 
as well as the usual normed linear space properties. In the case of such 
an A we can establish the continuity of inversion independently of 
completeness, as follows: let x have an inverse y, and suppose x+h 
has an inverse y+k. Then (y+k)(x+h) = 1, (y+k)(i+hy) = y, 
yhy+k+khy~Oy k~ — khy — yhy, whence 

if |\h\| ||y|| < 1 . Therefore we have the hypothesis of Theorem 2, with 
the following result : 

COROLLARY 1 (Mazur [6, Theorem I]) . Let A be a normed division 
algebra whose norm has the property 

INI* Ml ML 
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Then A is the real, the complex, or the quaternion field. 

From this one can deduce the following corollary. 

COROLLARY 2 ( [6, Theorem II ]). Let A be a normed algebra in which 
||xy|| = | H | ||y||. Then A is the real, the complex, or the quaternion field. 

PROOF. In the commutative case we can use a well known device 
[9, p. 246] to imbed A in a field to which Corollary 1 or even Ostrow-
ski's theorem [9, p. 257] may be applied. The noncommutative case 
is reduced to the commutative case by an application of the lemma 
as in Theorem 2. 

A less trivial result on integral domains will be considered in the 
next section. 

The other case in which inversion is continuous is that in which A 
is a complete separable metric algebra, for then the set of nonzero 
elements forms a separable metric locally complete set which is a 
group with continuous multiplication, and, by [7, p. 881 ], inversion 
is continuous. Combining this with Theorem 2, we obtain the follow­
ing. 

THEOREM 3. Let A be a convex, separable, metric and complete division 
algebra. Then A is isomorphic with either the real, the complex, or the 
quaternion field. 

I have been informed that the complex commutative case of this 
theorem was obtained recently by Mr. B. Yood. Mr. Yood's proof 
also makes use of Montgomery's theorem. 

3. Integral domains. An element z of a topological ring A is called 
a topological divisor of zero if there exists a closed set FQA not con­
taining 0 but such that 0 is a limit point of zF or Fz. We shall call an 
element singular if it has no inverse in a ring with unit and non-
singular, otherwise. 

Silov [8] has proved tha t if x is an element of a Banach algebra A 
and if Xo is a frontier point of the set of scalars X for which x— X is 
singular, then x— Xo is a topological divisor of zero. Silov concludes 
from this the following : 

Any complex Banach algebra satisfying the norm condition 
&||x|| | | j | | ^||:ry|| ^\\x\\ IHI with some fixed positive k is the complex 
number field. 

The argument of [8] applied only to complex Banach algebras be­
cause conceivably the set of X for which x— X is singular might be 
void for all nonscalar x in a Banach algebra. But if this were so, then 
each x5^0 in A would be nonsingular, or A would be a division 
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algebra and its structure would be given by Theorem 3. In somewhat 
greater detail: One can adapt the argument of [8] to show that if the 
set 5 of singular elements has a frontier point z in a normed algebra, 
then z is a topological zero divisor. In a Banach algebra the set S is 
always closed. Now the condition k\\x\\ \\y\\^\\xy\\ certainly pre­
cludes the existence of nonzero topological zero-divisors, hence S 
consists of 0 alone and A is a division algebra. We formulate this re­
sult as a theorem. 

THEOREM 4. Let A be a normed algebra in which jk||#|| ||y|| ^ | |xy| | 
= llxll IHI with & fixed positive k. Then A is the real, the complex, or the 
quaternion number system. 

I t is possible to omit the condition that A be complete, since A 
can be completed without losing the norm condition. 

The reader will observe that we have confined ourselves to normed 
integral domains in this section. This seems to be necessary as we can 
exhibit a complete convex complex algebra which has no topologi­
cal divisors of zero, and is not a division algebra: 

Let A be the class of f unctions holomorphic on an open subset G of 
the complex plane; and let this f unction space be given the k-topology.2 

Then this complex linear algebra is (1) convex, (2) metrizable, (3) com­
plete, (4) not normable, (5) it contains no topological zero divisors, and 
(6) the set of singular elements is open. 

PROOF. (1) is obvious. For (2), see [l, Theorems 7 and 12]. For 
(3) observe [l, Theorem 10 ] and the fact that a sequence of holo­
morphic functions can converge uniformly on an open set only to a 
holomorphic function. Now (4) will follow from (6) and the well 
known properties of Banach algebras to which we have alluded in 
Theorem 4. As regards (5), l e t / , gnG-4 with ƒ =^0 and fgn—»0 in the 
fc-topology, of A. Let a closed bounded set KQG be given. We can 
cover K with a finite number of regions d , • • • , Gn whose boundaries 
lie in K and such that \f{z) | has a positive minimum m on the point 
set C formed by these boundaries. For z g C w e evidently have 

\gn(z)\ g a r 1 sup I ƒ(*)*»(*) I. 

Since the right-hand side tends to zero as n tends to infinity we have 
gn—»0 in the ^-topology, using the principle of the maximum modulus. 
Hence ƒ is not a topological zero-divisor. To prove (6) suppose that ƒ 

2 We have proposed this name for the topology usually introduced into such func­
tion spaces. For its definition, see [l, p. 481 ]. In it, convergence simply means uniform 
convergence on the bounded closed subsets of G. 
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has no inverse in A. This means simply that f(z0) = 0 for some Zo£G. 
About So we can describe a small circle C lying within G, and on 
which ƒ has a positive minimum m. The set V of all hÇ^A for which 
sup«£c|&(2)| < ^ constitutes a neighborhood of 0 in A, in the &-to-
pology. But by Rouche's theorem, if hÇ: U then ƒ and f+h have the 
same number of zeros within C. Thus f+h has no inverse in A. This 
proves our assertions. 

4. The continuity of ring operations. We have not required multi­
plication to be continuous in both factors simultaneously, as is cus­
tomary in our topological algebras, because we did not need this 
property. Nevertheless, complete metric algebras have it. We append 
this section to consider such matters. For greater generality, define an 
m-ring as a ring whose elements form a metrizable topological group 
under addition, and whose product is continuous in each factor, under 
the topology. 

THEOREM 5. Let A be a complete m-ring. Then multiplication is con­
tinuous in both factors simultaneously. If the set of nonsingular elements 
is a separable Gs and A has a unit, then the process of inversion is con­
tinuous in this set. 

PROOF. I t will suffice to show that if xn—•>() and a neighborhood U 
of 0 be given, then there is a neighborhood F of 0 and an integer n 
such that XmVC U for m^n. 

Since A is a topological group under addition, we can find a neigh­
borhood W of 0 such that W~—W(ZU. Let An contain those yÇzA 
for which xmyÇzW~~ if m^n. Since right multiplication is continuous, 
the set An is closed. Each y Ci A is contained in some An because 
xny—->0 and SO Xfn yG-W for m not less than some suitable n. Hence 
some A n contains an open set V+y where F can be selected as a neigh­
borhood of 0. If V+y(ZAn then xmV+xmyC.W~ for m^n. One may 
select n greater if necessary so that x w y £ W if m^n. Then xmV(ZW~ 
— Wfor m^n, as desired. 

If the set R of nonsingular elements is a G& it is obviously of the 
second category. If R is also separable then the elements of R form a 
separable space of the second category and also a group in which 
multiplication is continuous. By [7, Theorem 2], R is a topological 
group and inversion is continuous on R. 

In view of Theorem 5 it becomes natural to ask whether or not the 
nonsingular elements of a complete m-ring always form a topological 
group. We can give an example that this is not so. So far as we know, 
this point has never been mentioned before. 
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The ring we exhibit ror this purpose is the intersection La of all 
I>-spaces based on the interval [0, l ] , with p^l. We say fn—>0 in Lw 

if and only if/n--»0 in each Lp, pçîl* Thus topologized, Lw is a com­
plete convex m-algebra [2]. Now consider the following sequence of 
nonsingular elements of La : 

Cl/n for 0 ^ / S 1/n, 
fn{t) = I 1 for 1/n < t£ 1, 

n = l, 2, • • • . This sequence approaches the unit function 1, 1(2)^=1, 
of Lw. But the sequence of inverses /f1, jfr1, • • • does not approach 
1 since 

1/n, ,NpT (n-\y f X (fn\t) - lififdt = f l'\n - lfdt = 

tends to infinity as n—» oo and £ > 1. Hence the nonsingular elements 
do not form a topological group. In other words, inversion is not con­
tinuous on the set of nonsingular elements. 
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