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Introduction. A number of proofs of Hubert 's Nullstellensatz can 
be found in the literature. One, based on elimination theory and due 
to A. Rabinowitsch, is reproduced in van der Waerden's Moderne 
Algebra, vol. 2, p. 11. In a later chapter van der Waerden gives an­
other proof which is based on the method of specialization in fields 
of algebraic functions (pp. 59-61). The finishing touches to this proof 
(p. 65) presuppose the decomposition theorem for polynomial ideals. 
In his Ergebnisse monograph Idealtheorie, p. 46, Krull gives an ideal-
theoretic proof which, while it is based on the simple remark by 
Rabinowitsch, is of an advanced nature, since the proof makes use 
of the full dimension theory of algebraic varieties developed in §17, 
pp. 41-43. The main "Dimensionssatz" of p. 43 is based on a result 
which is proved only in §48, pp. 129-134. Moreover, the concept of 
integral dependence and the "Normalization theorem" of Emmy 
Noether are used in Krull's proof. 

In the present note we give first of all a short proof of Hubert 's 
Nullstellensatz which makes use only of the rudiments of field theory 
and ideal theory. Actually we give two new proofs of the Null­
stellensatz. A lemma used in the second proof enables us to establish 
a result on finite integral domains which we were not able to find in 
the literature. This result is as follows: 

If R =K[£i, £2, • • • , %n] is a finite integral domain over afield K and 
ifK is the algebraic closure ofKinR, then K contains all the fields which 
are contained in R. 

1. First proof of the Nullstellensatz. Let <pn denote the polynomial 
ring K [xi, ] in n indeterminates Xi, over a given ground 
field K. By a point a = («i, a2, • • • , ctn) we mean an ordered w-tuple 
of algebraic quantities ai over K. Our convention will be that con­
jugate ^-tuples over K represent the same point over K. Let Sn 

denote the (linear) space of all points. By a zero a of an ideal 31 
in tyn we mean a point a such that f(a)=0 for every polynomial 
f(x) [=/(*i> *2, • • • , xn)] in 31. The totality of zeros of 31 is the 
algebraic variety in Sn determined by the ideal 31 and shall be de­
noted by <U(3t). 

If Wis an algebraic variety in Sni we shall denote by 3(PF) the ideal 
in tyn consisting of all polynomials which vanish on W (that is, a t 
every point of W). The Hubert Nullstellensatz asserts the following: 
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Hi : 7/21 is an ideal in tyn then 3(1J(2l)) = radical of 21. 
I t has been shown by Rabinowitsch that the following special case 

of Hubert 's Nullstellensatz is equivalent to the full Nullstellensatz : 
H2 : If V{%) is an empty set then 2Ï is the unit ideal. 
For the convenience of the reader we reproduce here the original 

proof of Rabinowitsch. Let xn+i be an extra indeterminate and let 
tyn+i be the polynomial ring K [xlt X2j > Xn-\-l ]. If/(x) is any poly­
nomial in ^ n which vanishes on U(2l) and if we set g = l + x n + i / , then 
the ideal© generated in *$n+i by 21 and g is such that V($8) is empty. 
Hence by the special case H2 of the Nullstellensatz it follows that 
93 = (1). There exists therefore an identity of the form 

£ Aihi + gh=l, Ai E 21; *<, h G W 
i 

On replacing xn+i in this identity by —l/f and clearing the denomi­
nators we find a relation of the form^AiBi=fp , where J3iG$« and p 
is a non-negative integer. Hence ƒ belongs to the radical of 2t, and since 
the inclusion: radical of 2IC3(fU(2l)) is trivial, this establishes the 
Nullstellensatz. 

Let Rn denote any finite integral domain over K which can be ob­
tained from K by an w-fold ring extension: i?n=K[£i , £2, • • • , ?»»]. 
To prove H2 we first show that H2 is an immediate consequence of 
the following statement : 

H3 : If a finite integral domain Rn (over K) is a field then it is an alge-
braic extension of the field K. 

For if 21 is an ideal in ^ni different from the unit ideal, then 21 is 
contained in some maximal ideal of $„. If p is such a maximal ideal 
and if we set i? n ==$ n /p=K[ai , «2, • • • , a n ] , then Rn is a field and, 
therefore, if we assume H", it follows that the a* are algebraic over K, 
that is, a = (ai, «2, • • • , an) is a point. This point is a zero of p and 
hence a fortiori a zero of 21, since 2ÏCp. We have thus shown that if 
21^(1) then Ti(2l) is not empty, and this establishes H2. 

The proof of Hubert 's Nullstellensatz is thus reduced to proving 
H31. We shall prove H? by induction with respect to n, since H3 is 
trivial (if K[£i] is a field, then l /£ i= / (£ i )EK[£ i ] and hence £1 is a 
root of the polynomial xf(x) — 1). 

Granted that H3""1 is true, let Rn be a given finite integral domain 
K[£i, £2, • • • , £n] and let it be assumed that Rn is a field. Under this 
assumption we shall have i£w=K(£i) [£2, £3, * • * , £n]> where K(£i) is 
the field generated over K by £1. Hence if we apply H ^ 1 to Rn thought 
of as an Rn-i over the field K(£i), we conclude that Rn is an algebraic 
extension of K(£i). To complete the proof of H3 it remains only to 
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show that £i is algebraic over K. 
Each £», i = 2, 3, • • • , w, is a root of a polynomial fi(X) with co­

efficients in K[£i]. Let bi be the leading coefficient of fi(X), 6 ^ 0 . 
If (o is any element of Rny there will exist an integer p (depending on co) 
such that the product co • (62&3 • • • bn)

p can be expressed as a linear 
combination, with coefficients in K[£i], of the mtfnz • • • mn power 
products %3

2
2%iz * * * %n> 0^ji^mi—lf where m* is the degree of fi(X). 

Let v be the relative degree of Rn over K(£i) and let coi = l, 
C02, • • • , cov be a linear basis of jRn over K(£i). We can find an element 
61 in K[£i], 617^0, such that for each of the above w2ra3 • • • mn 

power products i$£§ • * • ££n the following is t rue: in the expression 
°f bi-%<?%?£ • • • & as a linear combination of the elements coi, a>2, 
• • • , cov, with coefficients in K(£i), the coefficient of coi is in K[£x]. 

I t follows tha t if we set 6 = 6i&2 • • • bn then b is an element of K[£i], 
different from zero, having the following property: for any element 
co in Rn there exists an integer p such that if cobp = ai+a2co2+ • • • +avcoV} 

a»£K(£i), then a i £ K [ £ i ] . Now let f be an arbitrary element of K[£i], 
£*7^0, and let us apply this result to co = l/f. Since 1, co2, • • , cov 

are independent over K(£i) and since bp/Ç£K(£i), it follows then that 
bp/Ç = ai, tha t is, any element f o /K[£i] , T^O, divides some power of 
the fixed element b of K[£i]. The existence of an element b^O with this 
property clearly implies that K[£i] cannot be a ring of polynomials 
in one indeterminate over K. Hence £1 is algebraic over K, and this 
completes the proof of H£. 

2. Second proof. In this section we shall give a second proof of the 
Nullstellensatz. If we take for 21 a prime ideal then Hi yields the 
following result: 

HJ: If p is a prime ideal in tyn then 3CU(p)) =p. 
This is the most important consequence of the Nullstellensatz, 

since it shows that there exists a one-to-one correspondence between 
the irreducible varieties in Sn and the prime ideals in tyn. I t is there­
fore desirable to prove HJ directly. On the other hand it is easy to 
deduce from HJ the full Nullstellensatz. In fact, H2 implies that if 
p7^ (1) then T>(p) is not empty. Since any ideal 21 in tyn which is differ­
ent from the unit ideal is contained in some prime ideal £^(1) (for 
instance in a maximal ideal), we see that from H![ follows H2, that is, 
the full Nullstellensatz. 

We shall prove H£ by induction with respect to n, since Hi is 
trivial. The proof will be based on the following lemma: 

LEMMA 1. Let Q be an integral domain and let R be an integral domain 
contained in 0. If Q is a simple ring extension of R : fl = R [co ], then there 
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exists in R an element a y* 0 with the following property : if p is a prime 
ideal in R such that a(£p, then £2-p7^(l). 

PROOF. We shall use small Latin and Greek letters to indicate re­
spectively elements of R and Î2. In the proof we may assume that co 
is algebraic over R, since otherwise the assertion of the lemma is 
trivial (if œ is a transcendental over R then 021^(1) for any ideal 21 
in £ , 21^(1)). Let 

(1) b0o>v + he**-1 + • • • + bv = 0, bo 5* 0, bi G R, 

be an equation of least degree v which co satisfies over i?. If 21 is any 
ideal in R then any element f of Q21 is of the form: f ƒ̂(<*>)> where ƒ 
is a polynomial with coefficients in 21. If we use (1) to reduce the de­
gree of ƒ we see that there exists an integer p (depending on f ) such that 

(2) f -#o = ciu + c2</ + • • • + c9, Ci G 21. 

If the element f also belongs to i?, say f = z, then (2) is a relation of 
algebraic dependence for o> over R, of degree less than v. Hence neces­
sarily £! = C2= • • • =c„-i = 0 and 

(3) zbo = cv G 21. 

If s = 1 then (3) yields 6gG2ï» that is, £0 is in the radical of 21. Hence if 
the radical of 21 does not contain b0 then S22Ï?* (1). I t follows that the ele­
ment bo is an element a the existence of which is asserted in the lemma. 

We now come to the proof of H£. Let f(x) be an element of 3(TJ(p)). 
We have to show that 

(4) fix) e p. 

We pass to the ring of residual classes Q = $„ /p=K[£i , £2, • • • , £n]> 
where & is the p-residue of #*. Let £* =ƒ(£). We have to show that 

(5) r = o. 

The case p = (0) is trivial. Hence we may assume that p?* (0). In this 
case there exists a non-identical algebraic relation between the ele­
ments £i, £2, • • • , £n, with coefficients in K. We may therefore assume 
that £n is algebraically dependent on £1, £2, • • • , £n-i, over K. We 
set i£=K[£i, £2, • • • , £n-i]. To our present two rings R and B we 
apply Lemma 1. Let a be an element of R, a 5*0, the existence of which 
is asserted in the lemma. 

We shall now show tha t if HJJ""1 is granted, then the hypothesis 
that (5) is not satisfied leads to a contradiction. Every element of Ö 
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is algebraic over R. In particular, let 

(6) dof + rfir-1 + • • • + d9 = 0, diGR, 

be a relation of algebraic dependence for f over P . Let us assume that 
(5) is false: f ^ 0 . Then we may also assume that ds^O. Since a and d9 

are in P , these elements can be expressed as polynomials in £i, £2, 
• • • , £,i-i, with coefficients in K: 

(7) a = g(& & , - • - , S«-i), a ^ 0; 

(7a) <*. = *(&, & , - • • , £n-i), <*, 7* 0. 

Let fi(x)—g(x)h(x)Ç$n-u and let pi = pn^J}w_i. I t is clear tha t 
P ^ ^ - i / p i a n d that^ i , £2, • • • , £*-i are the pi-residues of Xi, x2, • • • , 
xn-i. We shall show now that 

(8) fx(x) e S(V(pù). 

Let Pi(«i, 0:2, • • • , aw_i) be any point of U(pi). If Pi is a zero of 
the polynomial g(x) there is nothing to prove. Assume then that Pi 
is not a zero of g(x). The ideal 3(Pi) is a maximal (prime) ideal in 
$„_! which contains pi, since P i E l ^ p i ) . Hence if we set p0 = 3(Pi)/pi, 
then p0 is a maximal prime ideal in P , and the assumption that P i 
is not a zero of g(x) signifies, in view of (7), that a(£po. Hence, by 
Lemma 1, the ideal £2-po is not the unit ideal. Let p0' be a maximal 
prime ideal in Q which contains the ideal Q-po. Since po^po' and since 
po is maximal in P , it follows that p0' f \R = p0. Hence the po -residues 
of£i, &, • • • , ?n_i can be identified with their po-residues, that is, with 
the algebraic quantities ai, a2, • • • , a«_i respectively. Let an be the 
po-residue of £w. Since K[ai, a2, • • • , an_i, aw] =Q/p0 ' is a field, an is 
algebraically dependent on K[«i, cx2, • • • , a„_i], whence also an is 
algebraic over K. Hence a = (a^ a2, • • • , a„_i, an) is a point P of Sn. 
Since the coordinates of this point are residues of £1, £2, • • • , £n and 
since K[£i, £2, • • • , £w] = <iPn/pJ it follows that the point P belongs 
to V(p). Hence P is also a zero of the polynomial ƒ(x), since, by hy­
po thes i s , / ^ ) vanishes on TJ(p). This implies that ƒ(£), that is, f, be­
longs to po. But then, in view of (6), also d8 belongs to p0, and there­
fore, by (7a), A(a)=0, and this establishes (8). 

3. An application. By the hypothesis EC"1 of our induction it fol­
lows from (8) that fx(x) belongs to px. Hence /i(£) =0 , that is, ad, = 0, 
in contradiction with a 5^0 and d , ^ 0 . This completes the proof of H4. 

We shall now proceed to the proof of the theorem stated in 
the introduction. Let R be a finite integral domain over K: 
P = K [ £ i , £2, • • • , £n], and let K' be the set of elements of R which 
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are algebraic over K. I t is clear that K' is not only a ring but also 
a field, since if a £ K ' then K(a) = K[a ] . Since we have i£=K'[£i , £2, 

• • • > £n]> we shall replace K by K'. We assume therefore that K 
is maximally algebraic in R (that is, K = K ' ) . 

LEMMA 2. Kis a maximal subfield of R. 

PROOF. Let p be a fixed maximal prime ideal in R and let x be any 
element of R which does not belong to K. By H3 the field R/$ is an 
algebraic extension of K. Hence x satisfies a congruence of the form : 
/(x)==0 (mod p), where ƒ is a polynomial with coefficients in K, not 
all zero. Since p ¥" (1), fix) is not a unit in R. On the other hand since K 
is maximally algebraic in R and since x $ K , x is a transcendental over K. 
Hence ƒ(x) 5*0. This shows thatK(x) is not contained in R. Since this 
is true for any element x of R which is not in K, the lemma follows. 

COROLLARY. If F is any subfield of K such that R is a finite integral 
domain over F, then the algebraic closure of F in R coincides with K. 

For the algebraic closure of F in R is contained in K and on the 
other hand it must be a maximal subfield of Ry in view of Lemma 2. 

We shall need the following generalization of Lemma 1 : 

LEMMA 3. If an integral domain £2 is a finite ring extension of an in­
tegral domain R, then for any element a in £2, a 5^0, there exists a corre­
sponding element a in R, a^O, having the following property: if the 
radical of an ideal 21 in R does not contain a, then the radical of £221 
does not contain a. 

PROOF. Let £2 be an w-fold ring extension of R. We shall prove the 
lemma by induction with respect to n. 

Case n = l. We use the notation of the proof of Lemma 1 and we 
consider separately two cases, according as co is transcendental or al­
gebraic with respect to R. 

(a) co is a transcendental over R. We have a = g(co), where g is a 
polynomial with coefficients in R. Let a be the leading coefficient of gt 

a5*0. If 2t is an ideal in R and if some power of a belongs to 12-2Ï, 
then the same power of a must belong to 2Ï. Hence this element a has 
the desired property. 

(b) co is algebraic over R. In this case also a is algebraic over R. Let 
doof+diof--1-^ • • • + i « = 0, diÇzR, d«^0, be an equation of algebraic 
dependence for a over R. If some power a* of a belongs to B-21, 
then also da

s belongs to Î2-2Ï, since a divides d8 in fl. I t follows 
from (3), for 2 = ^ , that ^ôgG^Ï» where p is a suitable integer. 
Therefore if some power of a belongs to £221 then some power of 
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d8b0 belongs to 31. Consequently the element a = d8bohas the desired 
property. 

Case n>l. Let Q = jR[gi, & , • • • , f»], Qi = JR[£i, & , • • • , £n-i], so 
that Q = Qi[£w], By the case n = l, the lemma is applicable if we re­
place R by Qi. Let «i be an element of Oi which plays now the role 
of a. By the case n — 1, the lemma is applicable if we replace Î2 by Qi 
and a by «i. This yields an element a of i?, a 5^0, which has the de­
sired property in relation to the rings R, 0 and the given element a 
of Q. The proof of Lemma 3 is now complete. 

We now go back to our original finite integral domain R = K[£i, £2, 
• • • > £n]> where we assume that K is maximally algebraic in R. We 

have to show that if F is a field contained in R then F is already con­
tained in K. Let x be an arbitrary element of R which does not belong 
to K. We apply Lemma 3 to the two integral domains K[x] and R 
(these two rings now play respectively the role of the rings R and 12 
of the lemma). We take for a the element 1 of R (nevertheless it is 
clear that our inductive proof of Lemma 3 could not have been car­
ried out if we had restricted ourselves to the special case a = l ) . In 
this special case, Lemma 3, and the fact that x is a transcendental 
over K, yield the following result: there exists a polynomial g(x) in 
K[x] such that any irreducible polynomial in K[x] which does not 
divide g(x) is a nonunit in R. Now let A be the intersection of the two 
fields K and F (the two fields have in common at least the prime sub-
field of K). We can certainly find a polynomial in A[x] which is 
relatively prime to g(x) in K[x] . If f(x) is such a polynomial, then by 
the preceding result f(x) is a nonunit in R. Consequent ly/^) does not 
belong to the field i7, and since the coefficients of f(x) are in F it 
follows that x is not in F. Since x was an arbitrary element of R not 
belonging to K, we conclude that FQK, q.e.d. 

From the theorem just proved and from the corollary to Lemma 2 
we draw immediately the following consequence: 

If R is a finite integral domain over a field K and if F is any subfield 
of R such that R is a finite integral domain also over F, then R has the 
same degree of transcendency over K as it has over F. 

This result is of course also a consequence of the fundamental theo­
rem in the dimension theory of ideals in finite integral domains : if r 
is the degree of transcendency of R over K then every minimal prime ideal 
in R is of dimension r — 1. On the other hand, the above result gives 
an a priori reason for the fact that when the dimension of a prime 
ideal in R is defined relative to K as ground field, the resulting dimen­
sion theory is intrinsically related to R. 
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