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In a recent paper [2],1 Montgomery and Samelson have raised the 
question whether there exists, for some n, a compact fibering of Eu­
clidean w-space, and have given some reasons for thinking that no 
such fibering is possible. The purpose of this note is to provide further 
evidence for this belief by proving that a t least there is no compact 
fibering of the plane. The theorem I shall prove is in fact somewhat 
stronger. 

THEOREM 1. If f(E2) — A is an interior2 transformation of the plane 
such that for each two points, x and y, of A,f~l(x) andf^l(y) are homeo­
morphic, and such that each component of f~~x(x) is compact, then no 
component off^ix) separates E2 and A is a 2-manifold. 

If in addition f ~"x{x) is compact, then f is monotone and A is a plane. 

PROOF. I t cannot have escaped notice that a transformation satis­
fying the conditions placed on ƒ (omitting the homeomorphy condi­
tion) can be factored into a monotone closed transformation, g(E2) = B, 
followed by a light interior transformation, h(B)=A, even though 
such theorems have been stated for compact spaces only. The argu­
ments for Theorems3 VIII , 4.1, and VIII , 3.1, establish this. The 
proof of Theorem IX, 2.3, shows that B is homeomorphic to a set 
obtained by removing some non-cut point from a cactoid. If some 
component of some/"^(x) separates E2, then B has a cut point. Since 
each set g~~l(x) is a component of some set f^iy), y in A, and each 
two inverses of points of A are homeomorphic, B has uncountably 
many cut points. Hence some point p of B is of Menger order 2, by 
Theorem VII, 3.2. There is a point q of B such that the closure, C, 
of the component of B — q that contains p is compact. Over C, h is 
continuous, and over C—q, h is interior; indeed, h(C—q) is open in A, 
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1 Numbers in brackets refer to the bibliography. 
2 A continuous transformation f(X) = Y is interior provided that the image of 

every open subset of X is open in Y, and is light provided that every set/""KDO» y m Y, 
is totally disconnected. 

The statement of this theorem is weaker than that in Bull. Amer. Math. Soc. 
Abstract 53-1-106. In the original formulation, I used a characterization of the possi­
ble interior images of a 2-manifold that I had announced in Bull. Amer. Math. Soc. 
Abstract 52-5-220, but in the proof of which an error has been found. 

3 Theorems referred to in this way are from Whyburn's book [4]. The roman 
numeral is the chapter number. 
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Let R be a neighborhood of p whose boundary consists of just two 
points, and which lies with its boundary in C—q. By Theorem VIII , 
7.3, h(R)—h(R) is contained in hi'R — R). Since h(R) is open in A, it 
follows that its boundary is contained in h(R — R) and is therefore 
finite. Hence A contains a point x which separates some connected 
open subset, D, of A into two separated sets, Di and £>2. Let Xi and x2 

be points of Di and Z>2, respectively. Let Kbe a component oîf~1(x) ; 
K must separate E2 , for suppose that it does not. Then by Theorem 
VI, 3.11, in f~l(D) there is a 2-cell, C, that contains if, but has no 
point of f~l(x) in its boundary, and does not have any point of 
f~1(xi-\-X2) as limit point. Since/(C) is in P — (xi+x2), the boundary 
of f(C) intersects both Dx and Z>2, and, by Theorem VIII , 7.3, is con­
tained in the image of the boundary of C. But the image of the bound­
ary of C is a connected subset of D — x, and so lies wholly in Di or P 2 . 
This is impossible, so that K does separate E2 . In passing, notice that 
this implies tha t every component of each set f~~l(y), y in A, separates 
£ 2 , by the hypothesis that each two point-inverses are homeomorphic. 
One component, E , of E2 — K is bounded. Since K+E is compact, 
over K+E, ƒ may be factored into a monotone transformation, m, 
followed by a light transformation, from Theorem VIII , 4.1. The con­
tinuum m(K+E) has a t least two non-cut points, one of which is 
m{K) ; let y be any other non-cut point. Then by Theorem VIII , 2.2, 
m~1(y) cannot separate K-\-E, so cannot separate E, and hence does 
not separate E2 . This contradiction shows that B is a plane, so that 
h(B) is a 2-manifold, by Theorem X, 4.4. 

I t remains to show that if each set f~1(x) is compact, then ƒ is mono­
tone. This is true if the factor h of the previous paragraph is a homeo-
morphism, so tha t the result will be established if ƒ is assumed light 
and proved to be a homeomorphism. Whyburn's Theorem X, 5.1, 
shows that a light interior transformation on a 2-manifold is locally 
finite-to-1. Hence there is an integer k such that for each point x 
of A, f~~l(x) consists of exactly k points. Adjoin a point co to E 2 

to make it a 2-sphere, S2. The collection G whose elements are co 
and all sets f~l{x) is continuous, for if the sequence {;yw} of points 
of A converges to the point y of A, then by Theorem VII, 4.32— 
the Eilenberg condition for interiority—{/"H^n)} converges to f^iy) 
in E2 . The jfe-to-l property implies that {jf""1^)} converges in S2 

to f~~l(y). The continuity of G means that ƒ can be extended to 
a light interior transformation, g(5 2 )=-4 ' , which will necessarily 
be a local homeomorphism except at co. On page 197 of [4] Why-
burn has noted that since an interior transformation on a locally 
connected compact continuum cannot raise coherence, A' is*either a 
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sphere, a projective plane, or a closed 2-cell. The last of these is im­
possible under a local homeomorphism. In Theorem X, 7.3, Whyburn 
has given a formula connecting the Euler characteristic of a compact 
2-manifold with that of its image under a light interior transforma­
tion, t. Since A' has no boundary, this reduces here to 

kx(A') - x(S2) = kr - n, 

where r is the number of points y in A ' such that / is not a local homeo­
morphism at some point in t~l{y) and n is the total number of points 
in the inverses of all such points. For J = g, r = tt = l ; and x ( ^ 0 is 
either 1 or 2. Hence either k — 2 = k — 1, which is impossible, or 2fe —2 
= k — 1, which implies that & = 1, and that g is a homeomorphism. 

COROLLARY 1. There is no compact fibering of the plane other than a 
homeomorphism. 

PROOF. Since a compact fibering, f(E2)=A, satisfies all the hy­
potheses of Theorem 1, it is necessarily monotone, and A is a plane. 
Let C be an open 2-cell in A, and let F be a fiber. Then /~'1(C) is 
homeomorphic to CXF, if C is sufficiently small. If F is not a point, 
this implies that /""KO is the sum of uncountably many mutually ex­
clusive open 2-cells, an impossibility in E2. 

I do not know of an example of an interior mapping of the plane 
onto a 2-manifold where each component of the inverse of each point 
is compact, but where the transformation is not light. However, if 
the hypotheses of the above theorem are strengthened by local con­
nectivity assumptions, lightness can be proved. 

COROLLARY 2. /ƒ, in addition to the hypotheses of the first part of 
Theorem 1, each component of each setf~l(x) is locally connected, then f 
is light. 

PROOF. By Theorem 1, no component of a set f~l(x) separates E2, 
so that no component is a simple closed curve. Hence every such com­
ponent is either a point, an arc, or contains a simple triod. If one 
component of one point-inverse contained a simple triod, the condi­
tion that each two point-inverses are homeomorphic would establish 
the existence of an uncountable number of mutually exclusive triods 
in the plane; this would contradict Theorem 75, p. 254, of [5]. Hence 
each component of a point-inverse is either an arc or a point. Let T 
be a nondegenerate component. In the notation of the first paragraph 
of the proof of Theorem 1, since B is a plane, and h is interior, there 
exist an integer k and a neighborhood R of g(T) such that h(R) is 
at most fc-to-1, by Theorem X, 5.1. I t is easy to see that the Eilenberg 
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condition for interiority implies that there is a point z of R — g(T) 
such that g~1(z) is an arc, and such that h is locally 1-to-l in a neigh­
borhood U of z; U may be chosen to be simply connected and so 
small that each point of U has a nondegenerate inverse under g. Then 
g~l(U) is open and simply connected. The collection of all sets g~1(x), 
x in U, is a continuous collection of arcs filling up a set homeomorphic 
to a plane. J. H. Roberts has proved in [3] that there is not even an 
upper semi-continuous collection of arcs filling up a plane. Hence ƒ 
is light. 

I t is not difficult to see that the arguments for Theorem 1 and 
Corollary 2 can be combined and extended to prove the following. 

THEOREM 2. An interior transformation of a 2-manifold onto a 2-
manifold such that each component of each point-inverse is an arc or a 
point is necessarily light. 

The mapping of the plane onto a cylinder of radius 1 obtained by 
identifying all vertical lines whose abscissae are congruent modulo 2irt 

and the mapping w = sin z are interior mappings of E2 for which any 
two point-inverses are homeomorphic, showing that compactness is 
necessary in the second part of the theorem. If the requirement of 
interiority is removed instead, the conclusion of the second part is 
also false, as the following indication of an example4 shows: In the 
Cartesian plane, form undercut steps by making a downward crease 
along each line x = ± 1 , ± 4 , • • • , ±(3n+l)t • • • , and by making an 
upward crease along each line x= ± 2 , ± 5 , • • , ± (3w+2) , • • • . 
"Flatten" the plane along these creases onto a plane A so that each 
point of A is covered by exactly 3 points of the original plane. I 
should remark that Civin has proved in [ l ] that no exactly 2-to-l, 
closed transformation of JE1, E2 , or Ez exists. 
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PURDUE UNIVERSITY 

4 This is modified from an example of a 3-to-l mapping of an arc onto an arc due 
to Schweigert. 


