ON THE LOWER ORDER OF INTEGRAL FUNCTIONS
S. M. SHAH

Let f(2) =E§° a,z" be an integral function of order p. It is known
that!

. nlogn . log log M(r)
1) limsup——F—+—— = p =limsuyp———— (0 < p £ x).
n—o IOg {I/I dnl } r—e Iog r
A similar result for the lower? order N, namely
nlog n log log M
lim inf — 8"\ = lim ing 5B M)
n—o 10g {1/' a,,l } T lOg r

does not always hold. In fact for

1
exp(z2>+exp(z>=2+z+z2(-1—1+%)+--~

n log n
lim inf g

n— 0 log {1/‘ a,.l }
whereas A=p=2.
We prove here the following theorem.

THEOREM 1. If f(3) =D _&an3" is an integral function of order p and
lower order N (0SN= «) then
L. nlog n L. log n
2 A 2 liminf —/——— 2 liminf —/———
n—ow IOg {l/l a,,l } n— oo log l d,./d”+1|

COROLLARY 1.3

n/ Gn. I 1 n
liminfM < liminfM _1 < L
@ log n noe  mlogn o T A
e log {1/ e} log | an/aw
= limsup——; = limsup————— -
e nlog n e log n
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1 E. C. Titchmarsh, Theory of functions, pp. 253-254; E. T. Copson, Tkeory of
Sfunctions of a complex variable, pp. 175-178.

2 For the definition, and so on, see (i) J. M. Whittaker, The lower order of integral
Sfunctions, J. London Math. Soc. vol. 8 (1933) pp. 20-27; (ii) S. M. Shah, The lower
order of the zeros of an integral function (1I), Proceedings of the Indian Academy of
Sciences-(A) vol. 21 (1945) pp. 162-164.

3 Cf. a similar result (1) in S. M. Shah, The maximum term of an entire series,
Mathematics Student vol. 10 (1942) pp. 80-82.
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COROLLARY 2. If limu., % log n/log{1/|as| } =L where 0SL<
then f(2) =2 ¢ an3® is an integral function of regular growth* and of
order L.

THEOREM 2. If (i) f(2) =D ¢ ans™ is an integral function of order p
and lower order N (0 SN ) such that (ii) Ia,,/an+1| is a nondecreasing
Sfunction of n for n>mny, then

@ \ = lim int nlog n lim inf logn
= lim inf ——F—~ = liminf —/——F—
wow  log {1/] aa] } noe  log | n/Gasa| ’
log n

(5) p = limsyp—7————
n—r 0 plOg I a,./a,.+1|
We note that the hypothesis (ii) of Theorem 2 does not imply that
f(2) is of regular growth. In fact we have the following theorem.

THEOREM 3. There exists an integral function f(z) =Y ¢ .3 for which
(i) @.>0, (ii) @n/ans1 is a steadily increasing funciion of n, and (iii)
p>N.

An interesting application of these results can be made to the series
F(2) =2 ¢ an€az™ where {e,} are a set of numbers such that le,,l =1
or 0 and such that D ¢ a.€,3" consists of an infinite number of terms.
F(2) is an integral function. Let its order be p(F) and lower order be
N(F). Since

M@, ) = | a,.l "= | ane”| r"

for every » and 7, and so if u(r) denotes the maximum term, M(r, f)

=u(r, F). Hence

(6) M) ZME); o) Z p(F).

If |a,./a,,+1| =y(n) (say) is a nondecreasing function of # then

M) A = liminf — B < limsup— 8" )
now  log {1/] aa| } now - log {1/ anea| }

and so we have the following theorem.

THEOREM 4. If f(3) =2 ¢ an3" is an integral function of order p and
of lower order \ and is such that I @n/Cn +1| 1s a nondecreasing function of n
for n>mno, then F(z) =2 o az€.z™ is of order p(F) Z\.

For instance every function F=) ¢ €.2"/n! is of order 1.
An example, to illustrate the point that by an appropriate choice

4 Cf. G. Valiron, Lectures on the general theory of integral functions, pp. 41-44.
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of €, the order p(F) of F(2) =) a.€.2" can be made equal to any num-
ber x where A(f) Sx S p(f), is given in the proof of Theorem 3.

The function exp 3= _¢2*/n! for which ¥(n) is an increasing func-
tion of # is bounded on the real negative axis and the series

28 28
F3) =g — — 4+ — — ...
@=z2-31175

is bounded on the real axis. If Y(n) is increasing sufficiently rapidly
then we prove that f(z) and F(z) are not bounded on any line arg z=a
(0=a=2w). In fact we have the following theorem.

THEOREM 5. If f(2) =) _¢ asx23™ is an integral function of lower order \
such that Ia,,/a,.+1| =92 a,._l/a,.l for n>mno then

log log m(r, log log m(r,
® limsupBl8m ) oo g e lEmn )
1= log r e log r

where m(r, f) =min|,,_,lf(z)l and 9 =22,

LEMMA. a, is any sequence of real or complex numbers such that®

(i) la.]| <1 for n > no.
Let |
1 1 n l n n
oy = el eel} ) tog leennl,
nlog n log n
o = lim inf ¢(n); v = liminf {1/¢(n)};
B = lim sup ¢(n); 5 = lim sup {1/¢(n)};
A = lim inf §(n); C = liminf {1/8(n)};
B = lim sup 6(n); D = limsup {1/6(n)};
then
9) asA=1/D; 1/C=B=<pB; Cz=+.

(ii) If® further y(n) is a nondecreasing function of n for n= N and

Y(N)=1then
(10) C=~v=1/8; D=bd=1/a
The proof of (9) is straightforward and omitted.

8§ Some of the relations in (9) and (10) hold under less restrictive conditions.
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Proor orF (10). By hypothesis (ii), «, 3, ¥ and & are non-negative
and B=1/v, a=1/8. We prove B=p. Suppose first 0 << ». Then
Y(n) > nf-e for n =Ny, Ngy--+,Np, -« .

Let N1>max{no, N}. Then

= k(N)Y(N1i+1) -+ ¢(n — 1),
logy(Ni+ 1)+ - -+ + log ¥(n — 1).

nlogn

6(n) = o(1) +
Let n=[N, log? N,]+1. Then

(n— N,)log Ny '
n log n

Hence B = which holds also when 8=0. If 8 be infinite the above
argument with an arbitrary large number instead of 8 —e gives that
B = . Hence from (9) we get that B=8 and so C=v=1/f. The sec-
ond relation in (10) follows similarly.

PrOOF OF THEOREM 1. Since Y@, is convergent, |a.| <1 for n>n,.
As Czv we need prove A = C only. Suppose first 0 <C< . Then

0(n) 2 o(1) +

nlog n
log {1/] e }
‘ an| > ponl(C—0,
Let r,=2ntC-9, If r,Sr<7,11 (n>N) then
M(r) = | a,,l = l a. | 7n > n—™C=0 exp (n log r,) = exp (n log 2).

Hence log M(r) 2log 2{(r/2)¢=¢<—1} for all large  and so AZC,
which holds when C=0. If C= », the above argument shows that
A= o,

Corollary 1 follows from (1), (2) and (9), and Corollary 2 from (1)
and (2). The example given at the beginning of the paper shows that
f(2) may be of regular growth and lim,,m{n log n/log {1/] a,,l } } may
not exist.

ProOF OF THEOREM 2. Let u(r) denote the maximum term, »(r) its
rank. By hypothesis (ii), ¢ (n) >¢(n—1) for an infinity of »; for if
otherwise Y (n) =¢(n+1)= - - . ad inf for n>p, say, and hence the
radius of convergence of the series ) a,2" would be finite. /(n) tends to
infinity with ».

When ¢(n) >¢(n—1) the term a@,2" becomes a maximum term

> C — ¢
foralln = N(e).
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and we have u(r)= Ia,.lr", v(r)=n for y(n—1)=Sr<yY(n). Now
A=lim inf, . log »(r)/log . Suppose first that 0 <A< «. Then »(r)
>rr—¢ for r>R=R(e¢). Let Izl =¢>R and let am3z™ and an;z™
(my>no; $(my—1)>R) be two consecutive terms so that m; Smy—1
and let m;<n =ms. Since am,2™! is maximum term we have v(r) =m,
for Y (m,—1) <7 <yY(m,). Hence for every 7 in this interval m,=w(r)
>r*=¢, In particular m;> {{(m1) — C}*~¢ where C=min{1, ((y(m,)
—y(my—1))/2}. Further we have

Y(m) =¥ +m) = - - - =yY(n —1).
Hence
W+ D) - pn— 1) = || < g - 1))

< {C + m;" (A\—¢) } n—ng—1
< K(no)Znn(n—-mr—l)/()s—c)‘

Hence for all large »

Qn

< Kl(no)z" < p(r—n0—1) [ (A—e)

and so
(11) C=\

which holds when A=0. If A= the above argument gives C= =,
Hence from (2), A=C and so from (10) we get (4); and from (1) and
(10) we have (5).

ProoF oF THEOREM 3. Let n1=2, n,u=n, (s=1,2,3, -+ +),

2
rn=1, Tm =M for n, = m < n,,

Neyy — M

2
o = Mayy — { for n, = m < oy,

(Bagr)! } (net1)1
s=1,2,3,---,and let -
f@=1+%

1

rlr2 DTS rﬂ

Then a¢,>0 and @s/@s1=7s4+1 which is a steadily increasing function
of n. Also
logryi+4 -+ - 4 log 7

0(n) =
n log n

Hence
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(n: — nf) log (n:) 1

4n} log n,

0(tay1) ~

(nit log n, — nf) log (n:) + O(nf log n,) )

2
0(1n, log n,]) ~
([ Log m]) n? log nt log {n? log n,}

It is easily seen that lim supp..0(z) =2;lim inf,..0(%) =1. Hence f(z)
is an integral function of order 1 and lower order 1/2. Let now

1 when m = [n, log n,] (s=1,2,3---)
"= { 0 otherwise.
Then - -
F(z) = E Bnnz™ = 3 —e—ni—
1 1 7172 Ty

is an integral function of order 1/2. If
{1 when m = n, (s=1,23---)
€p =
0 otherwise

then F(z) isof order 1. Let 1/2<x<1 and €, =1 when m = [exp (4x log )]

(s=1,2,3, - --) and zero otherwise; then F(z) is of order x.
PrOOF OF THEOREM 5. Let |e,| =1 for =Ny, N, - - - Ny, - - -
(N1>n0). We write N,=N. Let Ry=9¢(N—1) and |2| =Ry=R.
wr, f) = | an| ¥ = u(r, F) fory(N — 1) = 7 <y¥(N)

and R lies inside this interval.

N—1 @
| f(2) | = Z 3™ + anzV¥ + Z @n2®
]

N+1

N—1

Z 2™
0

L
Z (1% Ai¢

N+1

= :U'(R) f) -

Now

N—1
Y Gaz™
0

élaN-llRN‘l+"'

1 1 1
= u(R) {‘:’j PYRLT . +;,(N—T2)’+ o(l)}
< (R){1+1+1+ d'f}+"(R)

— R— Rs— o o @ a n
= K 0 04 09 ! 1010
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for all large N.

o
E 3"

N+1

S aypr| RV 4 -
1 1 1
§M(R){—0—+;+;;+”-}.

Hence for all large R

u(R, f)
> .
L@ | > =
Similarly R
IF(Z)I >I-"( vf .
10000
Hence f and F are not bounded on any line arg z=oa.
Since

.. loglog u(r, f)
lim inf ———MmM— =
r—o log r

A

the theorem follows.

Added in proof. A short note containing a part of each of the Theo-
rems 1, 2, and 3 appeared in J. Indian Math. Soc. vol. 9 (1945)
PpP. 50-54.
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