
VECTOR FIELDS AND RICCI CURVATURE 

S. BOCHNER 

We shall prove theorems on nonexistence of certain types of vector 
fields on a compact manifold with a positive definite Riemannian 
metric whose Ricci curvature1 is either everywhere positive or every­
where negative. Actually we shall have some relaxations of the re­
quirements both as to curvature and as to compactness. We shall 
deal with real spaces with a customary metric and with complex 
analytic spaces with an Hermitian metric. In the latter case we shall 
impose on the metric a certain restriction, first explicitly stated by 
E. Kaehler,2 which will be quite indispensable to our argument. In 
order to elucidate the rôle of this restriction we shall include a sys­
tematic introduction to the theory of Hermitian metric. 

For positive curvature we shall have the theorem that on a com­
pact space there exists no vector field for which the divergence and 
curl both vanish. In the complex case there exists no vector field 
whatsoever whose covariant components are analytic functions in the 
complex parameters. If we only assume that the curvature is non-
negative, then there are some "exceptional" vector fields in directions 
of spatial flatness. A principal result will be the following theorem on 
meromorphic functions. If a complex space with positive curvature is 
covered by a finite number of neighborhoods, if a meromorphic func­
tional element is defined in each neighborhood, and if the difference 
of any two meromorphic elements is holomorphic wherever the ele­
ments overlap, then there exists one meromorphic function on the 
space which differs by a holomorphic function from each meromorphic 
element given. In a previous paper8 this conclusion was drawn in the 

Received by the editors June 28, 1946; published with the invited addresses for 
reasons of space and editorial convenience. 

1 Also called mean curvature; the definition will be restated later in the text. In­
teresting facts relating Ricci curvature to Riemann curvature have been given by 
T. Y. Thomas, On the variation of curvature in Riemann spaces of constant mean curva­
ture, Annali di Matematica Pura ed Applicata (4) vol. 13 (1935) pp. 227-238, and 
New theorems on Riemann-Einstein spaces, Rec. Math. (Mat. Sbornik) N.S. vol. 3 
(1938) pp. 331-340. Also, for the application of the Laplacean on compact Riemannian 
spaces see T. Y. Thomas, Some applications of Greeris theorem for compact Riemann 
spaces, Tôhoku Math. J. vol. 46 (1940) pp. 261-266. 

2 Ueber eine bemerkenswerte Hermitische Metrik, Abh. Math. Sem. Hamburgischen 
Univ. vol. 9 (1933) pp. 173-186; see also S. Chern, Characteristic classes of Hermitian 
manifolds, Ann. of Math. vol. 47 (1946) pp. 85-121, especially pp, 109-112. 

8 S. Bochner, Analytic and meromorphic continuation by means of Green*s formula, 
Ann. of Math. vol. 44 (1943) pp. 652-673, especially p. 672, Theorem 15. 
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case of a multi-torus; however, in that case, due to the flatness of the 
space, some necessary and sufficient conditions on the meromorphic 
elements had to be added. These conditions correspond to the "ex­
ceptional" vector fields mentioned before, and they do not occur if 
the curvature is strictly positive. 

For negative curvature our theorem will in the main be a general­
ization of a theorem of Schwarz and M. Noether4 from one to several 
complex variables. It states that on an algebraic curve of genus p> 1 
there is no one-parametric group of rational transformations. In 
other words, on such a compact two-dimensional surface in one com­
plex variable there exists no continuous group of analytic homeomor-
phisms. Now, the universal covering surface of such a surface can be 
identified with the unit circle | z\ < 1 and thus endowed with a hyper­
bolic metric of (constant) negative curvature. Thus we can express 
the theorem of Schwarz and Noether in the following second version. 
If a "real" compact two-dimensional space with a Riemannian metric 
has (constant) negative curvature then there exists no continuous 
group of conformai (that is, angle-preserving) transformations into 
itself. Corresponding to these two versions we shall have two general­
izations to several variables. The complex version will be that if a 
compact complex space in n variables with a suitable Hermitian met­
ric has negative Ricci curvature (not necessarily constant), then there 
exists no continuous group of complex homeomorphisms. The "real" 
version will be less satisfactory but rather illuminating. We shall first 
show that for negative curvature in n variables there are no groups 
of motions. A motion preserves not only angles but also the lengths. 
In order to obtain a theorem on transformations which distort the 
length we shall have to add an assumption on the nature of the dis­
tortion. However, this assumption will be automatically fulfilled for 
w = 2, and thus technically a proper generalization will be obtained. 
We shall also have "exceptional" groups in case the curvature is only 
nonpositive, and we shall have a further statement in case the given 
compact space is a minimal variety in some higher-dimensional space 
of nonpositive curvature. 

Finally we shall have some converse theorems, but only locally. A 
converse theorem states that if there are sufficiently many vector 
fields of one kind or another then the curvature is negative or positive 
respectively. Locally, a gradient field is a scalar function from which 
it is derived, and several gradient fields is therefore a mapping into 

4 H. A. Schwarz, Gesammelte Abhandlungen, vol. 2, pp. 285-291 ; M. Noether, 
Math. Ann. vol. 20 (1882) pp. 59-62 and vol. 21 (1883) pp. 138-140. See also 
A. Hurwitz, Mathematische Werke, vol. 1, pp. 241-259. 
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Euclidean space. Correspondingly we shall have the following theo­
rems on complex space. Any piece of ra-dimensional surface in n~di-
mensional Euclidean space has negative curvature, but the presence 
of sufficiently many contravariant vector fields in commutation gives 
rise to a fundamental tensor whose curvature is positive. 

The most interesting problem in this connection is the problem of 
constructing a negative (hyperbolic) curvature from the existence of 
a noncommutative transitive group of analytic homeomorphisms on 
a piece of Euclidean or other space. This problem will not be ap­
proached at all in the present context. 

I. REAL SPACES 

1. Lemmas. Let S be an w-dimensional coordinate space with a 
fixed positive definite Riemannian metric 

(1) ds2 = gijdxidxj. 

The space is of differentiability class C8, and all scalars, vectors and 
tensors belong to class C2. For any scalar 0 we can form the Laplacean 

1 d / d<l>\ 
(2) A * , ^ , . , , - - ^ , , - ) 

and we shall apply it so the square length 

(3) <t> « k% = ««*<*/ = gifft', 

where {£»•} is an arbitrary vector field on all of S. We shall next have 
a definition. 

DEFINITION. A vector & on 5 is called a restrained vector, if either 

A0(Po) < 0 

at some point Po in 5, or 

(4) 4>{P) == constant 

throughout S. 
This definition will be justified by the following theorem. 

LEMMA 1. On a compact space S every vector is restrained relative to 
every metric. 

On a general S a vector is restrained if its length in some metric at-
tains a {relative) maximum in 5, and thus in particular if the length is 
less than e outside some compact subset depending on e. 

PROOF. The compact case can be dealt with by a "global" argu­
ment, namely Stokes' formula 
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(5) J (*-A* + g«^t<#,y)*« 0. 

In fact, if <£^0, A<£àO, then (5) can hold only if #,»=5 0, that is, 
<j> s constant, as claimed. But there is also a "local" argument which 
implies the lemma in its entirety. This is the following theorem of 
E. Hopf.5 If A<£ è 0 in a neighborhood T, and if there exists a point 
Po in T such that 4>{P) £<j>(Po) for all P in T, then 0(P) =E0(P O ) in 7\ 

We now start from the formula 

(6) &,y,ft — &,fc,i ~ &.#*;& = 0 

where R$jk is the curvature tensor. The Ricci tensor arises by con­
traction, 

(7) Rij = 2c<# =» g Rujk = iwyft» 

and it has the following interpretation.6 If for a given point we con­
sider n orthogonal unit vectors rj\m^ tn — 1, • • • , n, which are co-
oriented with #1, • • • , xn, and if we denote by Kpq the curvature of 
the geodesic surface element which is determined by rj^ and rj\a)l 

then the sum 

KU + K12 + • • • + Kin 

is given by 

— Rifl art a» 

thus being dependent only on rf^ itself. We shall call it the Ricci 
curvature in the direction rj\xy The curvature is called positive if it 
is strictly positive in all directions. 

LEMMA 2. The quantity 

(8) 2 - ^ = 2-Y°(gahUb),r,* = gr8gabUM,9 + gr8gabUrM 

has the value 

(9) gr°ga%Ab,* - Rlmtâm + A 

where the remainder term is 

6 Elementare Bemerkungen ueber die Loesungen partieller Differentialgleichungen 
zweiter Ordnung vom elliptischen Typus, Preuss. Akad. Wiss. Sitzungsber. vol. 19 
(1927) pp. 147-152. 

6 See L. P. Eisenhart, Riemannian geometry, p. 113. We have adopted Eisenhart's 
normalization throughout, and this explains why positive Ricci curvature corresponds 
to a negative Ricci quadratic form. 
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(10) A « gr'gah(ïa,rt, - &,.,. + &,,•)«»; 

i* a/50 Aas tóe */a/we 

(H) «fV*É..rfr.. + RlmUm + B 

where 

(12) B - g-V»tt.ifii + &.... - &,..)&. 

In fact, from (6) we obtain 

/ V (Ér.t.o — Sr.a.*)Sb — g" •#«&£& = 0. 

If we add this to (8) we obtain (9), and if we subtract it from (8) we 
obtain (11). 

2. Positive curvature. Since the term 

(13) gr*ga%M,* 

is positive for arbitrary quantities &,,• except in the case where the 
latter are all 0, we first obtain the following conclusion. 

THEOREM 1. The remainder term A is obviously 0 whenever 

(14) lu = hi and g^ij - 0, 

that is, 

(15) curl £ = 0 and div $ = 0, 

or more generally, whenever 

(16) (&,, - &,<),» = 0 and (««&,,),» = 0. 

Therefore, there exists no restrained vector field which satisfies relation 
(16) and 

(17) - *«'&& ^ 0 

unless we have 

(18) - Rt'Uj - 0, &,, - 0. 

JTAWS, tóe <w/;y exceptions are fields of parallel vectors in directions of 
Ricci-flatness, and they cannot arise, for instance, if the space as such 
has positive Ricci curvature throughout. 

A vector field for which £»,ƒ = £,•,• is a local gradient field and can be 
described in the following way. There exists a covering of the space 
by a system of neighborhoods { Up}, which for a compact space is 
finite, and a scalar ƒ (2>)(x) on each Up, such that 
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(19) / ( p )(s) - /(t t)(s) = constant 

whenever two neighborhoods Up, Uq intersect. And £» is defined as 

(20) fe - 4~f(p)(*) 
dXi 

on Up. The second part of (14) amounts to assuming that each fip)(x) 
shall in its neighborhood be a solution of the Laplacean 

(21) A/ = 0, 

and our theorem states in particular that on a space of positive Ricci 
curvature every f(p)(x) is itself constant. It should be noted that this 
conclusion is trivial if S is simply connected, or if some simply con­
nected covering space of 5 is compact, since in this case the system of 
equations (20) can be solved by one function ƒ(#) in 5; and since its 
Laplacean vanishes, it is a constant throughout. 

3. Negative curvature. We now turn to an analysis of the expres­
sion (11) and we shall first have a detailed lemma on the influence of 
the remainder term B. 

LEMMA 3. The remainder term B vanishes if 

(22) €«.i+*y.<-0 t 

or more generally if 

(23) (&./+&<).* « 0 . 

Thus it vanishes if the contravariant components £* are an infinitesimal 
generator of a one-parametric group of motions, that is, metric-preserving 
homeomorphisms, or, more generally, of affine collineations. 

We have B^O, if there exists a scalar function \(x) such that 

(24) fe,y + fa - \gih 

that is, if (•* represents a one-parametric group of angle-preserving (con­
formai) homeomorphisms, provided we also have 

(25) (1 - n/2)^Mj £ 0, 

the latter condition being automatically fulfilled f or w = 2. 

PROOF. If we multiply (23) by g**, then due to the symmetry of gi1 

we obtain 
gr%,*,a - 0, 

and thus (23) implies B = 0. On any differentiable manifold, with or 
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without a Riemannian metric, a vector £* describes a local group of 
differentiable homeomorphisms. If a metric is given we can form the 
covariant components &, (22) is the necessary and sufficient condition 
for the transformations to be motions,7 and (23) for affine collinea-
tions. 

Condition (24) expresses preservation of angles. If we differentiate 
it we obtain 

(26) fcj,* + £y,t\& = X.kgij 

and hence 

rV(*« . r . t + &,•,.)& = g8bX,el;b. 

If, however, we multiply (26) by gi}'ghb^b we obtain 

~ gr8ga%,eM - - (n/2)g°h\ £h 

and thus (25) is equivalent with B âO. 

THEOREM 2. There exists no restrained group of motions {(•*} for 
which 

(27) - J ^ £ > £ 0, 

unless we have 

(28) fo,y - 0, Rttfi* « 0, 

/ t o is, unless it is a group of translations along Ricci-flat geodesies. 
For w = 2, the same conclusion holds f or conformai mappings {£*}, 

and f or n^S it will hold under the additional assumption (25). 

4. Almost periodic vector fields. Take a compact space S and its 
universal covering space T. If 5 has negative curvature, T most 
likely will not be compact. Introduce on T the group Y of automor­
phisms for which 5 is the set of co-sets, and denote by So a funda­
mental domain in 7\ I t can be chosen compact. Every scalar or tensor 
function on S gives rise to such a function on T which is "periodic," 
that is, invariant under I \ In particular the tensor gij can be periodi­
cally extended. Now take a vector field & on T which, though not 
necessarily periodic, is together with its second derivatives almost 
periodic with respect to I \ This means that if {7P} is a sequence in T 
then there exists a sub-sequence {yq} such that the sequence of vec­
tor fields %i(yqP) and their second derivatives is uniformly conver­
gent in T. 

7 Eisenhart, p. 234. 
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THEOREM 3. Any almost periodic vector field £»• on the covering space 
T of S is restrained in T, and thus Theorems 1 and 2, and similar theo­
rems, apply to such vector fields in T. 

PROOF. Due to its almost periodicity, the square length 4>(P) of & 
is bounded and uniformly continuous, and there exists a sequence of 
points Pp such that 

<t>(Pp)->sup<t>(P). 
p 

Each Pp lies in some image yP(So) of 50 , and owing to the compact­
ness of So there exists a subsequence yq such that the sequence of 
translated functions <t>(yqP) and their second derivatives will con­
verge uniformly in T towards a function $ (P ) which assumes its 
maximum in an interior point of T. Now, due to the periodicity of gijf 

we have 

A*(P) - A<t>(yqP) - A*(P), 

and thus A</>^0 implies A3>g£0. By Lemma 1, we therefore have 
$ = const. However this implies 0 = const., and thus £»• is restrained. 

5. Minimal varieties. If Vn is a subspace of any space Vn+i whose 
Riemann-Christoffel tensor vanishes, then for the Ricci tensor of Vn 

we have Rjk = gil(bikbji — bubjk) where bij are the coefficients of the 
second differential form.8 If Vn is a minimal hypersurface of Vn+i, 
then gi3'bij=*0,9 and therefore 

(29) Rjtfp - g'hMi 

where 

(30) Vi « M * . 

Thus the vanishing of (29) implies the vanishing of (30), and the 
vanishing of the latter for a group {£*} means that the orbits are 
asymptotic lines on Fn.10 However, any geodesic line of Vn which is 
asymptotic on Vn is a geodesic of Fw+i itself. The same reasoning ap­
plies to a minimal variety in a space Vm of any higher dimension 
m ^ » + l , since we have in general 

•Ry*£ £ = lui but bn £ • 
< r - l 

8 Eisenhart, p. 190. 
9 Eisenhart, p. 178, 
10 Eisenhart, p. 167. 
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Thus we obtain the following theorem. 

THEOREM 4. If the space Vn is a minimal variety in a space Vm, 
m*zn +1, of vanishing Riemann curvature, and if there exists a one-
parametric group of motions on Vn, then the orbits are geodesies in the 
enveloping Vm which are also asymptotic lines on Vn. 

II. HERMITIAN METRIC 

6. Power series. We take independent complex variables 

(31) tlt • • • , tm 

and we consider power series in these variables with complex coeffi­
cients, each series converging in some (not fixed) neighborhood of the 
origin. Every "function," that is scalar, scalar density or any com­
ponent of a tensor shall be such a series. 

A "transformation" 

(32) U = <t>i(h, • • • , tm), f « 1, •• - , «i, 

shall be given by functions <f>i which vanish at the origin, in order to 
allow unrestricted formation of the product of two transformations, 
and the Jacobian 

3(*iV-- ,<»') 

*(*i. • • • , U 

shall be not equal to 0 at the origin. The totality of such transforma­
tions forms a group, and we consider an arbitrary fixed subgroup V of 
the group. The elements of T shall be termed allowable transforma­
tions and the resulting quantities t' allowable variables. We can now 
define as usual vectors and tensors 

&» £ » & !m---t 

with upper and lower indices; also, contraction of an upper and lower 
index is again permitted. A symmetric affine connection T& is again 
a system of functions with the customary rules of transformation. 
It gives rise to a mixed tensor 

(33) Rijk = —~ Tik — Tij + TikTmj — TijTmk 
dtj otk 

with which we can form the Ricci tensor 

(34) Rii = Rijk] 
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it also gives rise to covariant differentiation of arbitrary tensors and 
tensor densities as usual. For instance 

(35) €«.y - -II1 — **r** 

(36) £.= -̂ 1 + ^ . 

Also derivatives of sums, products and contractions are to be formed 
as usual. 

We next introduce a fundamental tensor #*> For the present we 
only assume that it is symmetric 

(37) gij - gju 

and that the determinant 

g = Ikfilk^i, •••,»», 

is not equal to 0 at the origin. We emphasize that each component gij 
is a complex power series in the complex variables (31) and that the 
symmetry condition (37) is not at all an "Hermitian" property. There 
exist functions gij which are solutions of gijg%k = 5̂ , and they are a 
symmetric tensor. The expressions 

< _ - i ill dgik dgji dgjh \ 

(38) 1^-2 g [r^ + ~~—J 
are an affine connection, and the tensors ga, gif can be used for pulling 
indices up and down in a manner compatible with covariant differ­
entiation. Also 

(39) gtith = 0, g«» - 0, 

and11 

(40) * , - 2-1 - £ - log i - - ± Y]s + r ^ - 2 ' ^ . ± log i . , 
dtidtj Co otk dtm Co 

where Co is the value of the determinant g at the origin. Also 

(41) R)u + Rlij + RÏjk = 0 

and 

(42) Rijki =* ~~ Rjiki = — Rkiji* 
11 Eisenhart, p. 21. 
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7. Self-adjointness. We now put m = 2n and we replace the varia­
bles (31) by the symbols 

(43) zi, • • • , zn\ zi, • • • , zn. 

Allowable transformations shall be those having the special form 

(44) Za' = <t>a{zh • ! ' , * „ ) , Za' = ^a(zh • ' * , *»), 

where for each a = l, • • • , n the power series ^«(/i, • • • , tn) arises 
from the power series <£a(£i, • • • , tn) by replacing each coefficient by 
its conjugate complex value. Therefore, if each za is conjugate to za, 
then so is zâ to za', and therefore it will be consistent to assume 
henceforth that za are complex parameters and s« their conjugate 
values. However a function in general will continue to be a power 
series in all 2n variables (43), or rather it will be a power series with 
complex coefficients in the 2n real components xa> ya\ Za—Xa+iya* 
Special scalar or tensor functions whose power series depend only on 
Za will be termed "complex analytic" or "analytic" for short. 

From now on italic indices i, j , k, • • • will run from 1 to 2w; 
Greek indices a, £, • • • from 1 to n, and starred Greek indices will be 
n units more, a*==a+n. We shall also star italic indices to indicate a 
change by n, thus i* ~i ± n, j * *=j ± n. 

Let f i be a covariant vector. For a transformation (44) we have 

, dzp f dzp 
f « = f0 > f «* = O —— • 

OZa OZa 

Thus the In components of f » separate completely into the blocks f « 
and f «•. For all tensors this separation applies to each upper and lower 
index independently of the others. For instance, ga separates into the 
blocks gap, gpai gap* ga*/3, of n2 components each. 

We call a tensor self-adjoint if starring all indices simultaneously 
changes the value of a component into its conjugate: 

£>&*!*•.. = tiki"* • 

For a vector it means 

and for a symmetric tensor g^ it means 

(45) ga^ = &9« = ga*/3* = &**«*, 

(46) ga/9. = gpa = g^> = «**" 

A scalar shall be self-adjoint if it is real-valued. Self-adjointness is 
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preserved under addition, multiplication and contraction. If ga is 
self-adjoint, then the inverse gi3\ and Tjk based on g^, are self-adjoint, 
and so are the Riemann and Ricci tensors. Furthermore it is preserved 
under covariant differentiation. 

From now on all functions are assumed to be self-adjoint. 

8. Restrictions on the fundamental tensor. The first substantial 
restriction on the fundamental tensor shall be 

(47) gafi « 0 = g*?-

Thus only the "interacting" components gap^gpa can be not equal to 
0, and gap**!*?. We automatically also have 

g«0 = O 

and (38) gives 

(48) 
\ dzp dzy / ' 

(«) r ; , . - 2 - y ( - ^ - ^ ) , 
\ OZy OZ( / 

(50) rôV = 0, 
and 5 other relations obtained by symmetry and self-adjointness. 
From (35) we now have 

(51) fa,/* = f«ra/3, 
dzfi 

(52) t«j> = ~ ~ f « I > . 

However we also want to have T0^* = 0, and this will be obtained by 
Kaehler's restriction, which is: 

\56) " 7 — == " 7 — ' 
02/S OZa 

and by adjointness also implies 

(54) 
#2/3 dza 

This is equivalent with assuming that there exists (locally) a scalar 
function 0(s, §) such that 
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d2$ 
(55) gar -

dzaàzp 

Self-adjointness demands that $ shall be real-valued, and all these 
assumptions are indeed invariant under transformations of the type 
(43). We shall now list consequences of our restrictions. 

LEMMA 4. We have 

ozp ozp 

In particular if the component f a is complex analytic, we have f «.p* ==0, 
and if J"* is complex analytic we have fa,/3* = 0. 

More generally, if the indices ct\, • • • , ap are unstarred, we have 

f«i.. . . .«*^ - — T : — ; * • « • - • * > - — -

For the appreciation of the lemma it should be noted that if the n 
components f « are complex analytic the contravariant components 

will depend on all In variables (42) since the components ga^ so de­
pend. 

LEMMA 5. For the Riemann tensor we have 

(56) Ra,* = 0. 

More generally, due to (42), only those components of Rujk can be differ­
ent from Ofor which, in both pairs of indices (I, i) and (J, k) simultane­
ously, one element in the pair is a Greek unstarred and the other a Greek 
starred index. 

PROOF. It suffices to prove that i?#* vanishes. From (33) we obtain 
for this component the value 

d «• # a* . m a* ~™ «* 
Tfik Tffj + TfikTmj ~" TfijTmk, 

dtj otk 

and this vanishes since only the pure components T^ and T^ can 
be not equal to 0. 

LEMMA 6. We also have 
a a 

Rfiy*& = ~ Rifif* 
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PROOF. In the Bianchi identity 
cc a oc 

Rffy'i + Ry'PS + Rl0y' = 0 

the middle term is 0 by Lemma 5. 

L E M M A 7. For the Ricci tensor we have 

(57) Raff = 0, 

ô2 log IGI 
(58) Raf) -JLL-L 

where G is the determinant 

G = ||ga/3||«./3«l,...,«. 

PROOF. (57) follows from 

R«F = glkRla(3k 

by Lemma 5, and (58) follows from (40). 

9. Positive fundamental tensor. Finally, we make the assumption 
that the matrix ga$* is positive-definite. Consequently, for any vector 
f < the "square length" 

(59) <t> - gt'Ui - 2r*Y«fr 

is non-negative. For the Laplacean we have 

(60) A</> « g*i4>tiJ « *«*>.«.*• + *"#fy.«v. 

and by Lemma 4 this is 

3fy 
2g«< :/9!» . 

dZadzp 

Now, if we herein put s a=#a 4-iy«» then the resulting expression is a 
type of Laplacean in the variables (xa, ya) to which Lemma 1 will 
apply. 

If $ is the function occurring in (55), the positiveness of the tensor 
is expressed by the relation 

d2$ _ 
(61) — — j - j f f c o , 

OZaOZp 

which is supposed to hold for every vector fa. Also, we shall say that 
the Ricci curvature is nonpositive if RapÇaÇfi*}zO, and on account of 
(58) this is 
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(62) —-JL- j -^ fcO, 

which is the same type of relation as (61) is. I t is not hard to see that 
relations (61) and (62) must hold for arbitrary complex numbers 
f *, • • • , fn. In particular, if we introduce a complex curve 2«=2a(co), 
co = w +iv, and Ca~dza/dü), then we must have d2<£/dcod« ̂  0, that is, 
d2<f>/du2 +d<j>2/dv2*£0. In other words the function $ must be a sub-
harmonic function on any analytic curve. Similarly in the case (62), 
the function log G must be subharmonic in the manner stated. 

I I I . COMPLEX SPACES 

10. Vector fields. A complex space is a coordinate space in 2n real 
variables. Every basic neighborhood is the topological image of a 
neighborhood of the Euclidean space in n complex parameters. If two 
basic neighborhoods intersect, then the two images of the intersection 
are mapped into each other by analytic functions 

(63) Za = <l>a(zit - - • , *»), a = 1, • • • , n. 

I t is easily seen that all concepts and results of Chapter II can be ex­
tended to a complex space in the large. In particular we assume the 
existence of a tensor ga with all properties and restrictions as enumer­
ated before. We define a restrained vector field as before, and on a 
compact space every vector field is again restrained. 

LEMMA 8. If the covariant components f « are complex analytic then 
for the scalar 

(64) <*> = 2g«*ï«J> 

we have 

If however the contravariant components fa are analytic then we have 

PROOF. In the first case we have on basis of Lemmas 4 and 6 

4-iA<£ = gp**(g^f«É>),p,** = g"*g*Pta.ptrs + g^g^UtAr-

Now 

S <x,p,<r* ==: Ça,p,a* ia,<r*,p ==: "̂ " Ç\-K-a,<r*,p> 

and by Lemma 6 this is 
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Therefore 

+ ÇxRpaa* = — £\Rpa*a* 

pa* a/3* «#V»X X0* 

g g S*.PA» = - hg R«U* = - hfoR • 

In the second case we have, as claimed, 

P°* « J* P°* * „ « J* P°*n J*** 
g g«pÇ,pA = — g g«iï R\PA = ~ g Rp\pA f 

pa* 0*\ /S*X 

= — g Rp*a*\pÇ f — -K/3xf f . 
From Lemma 8 we obtain directly the following theorem, the first 

half of which is an unqualified extension of the theorem of Schwarz 
and Noether from one to several complex variables. 

THEOREM 5. On a compact space of negative Ricci curvature there 
exists no one-parametric group of analytic homeomorphisms whatsoever. 
More specifically, if on any space in a restricted vector field the contra-
variant components f" are complex analytic and — Rap*ÇaÇPSO holds, 
then we of necessity have f̂ .̂  = 0 and i?«/3*faf,s* = 0. 

If however the covariant components f a are analytic then the inequality 
—RaPÇaÇfi^0 must be a strict equality and it implies J"«,/3 = 0. 

I t should be noted that the second half of the theorem is not re­
stricted to local gradient fields as was Theorem 1. 

I t is very easy to extend Theorem 5 from vectors to tensors. 

THEOREM 6. If a compact space has positive Ricci curvature then there 
exists no analytic covariant tensor f«i...«p whatsoever, and for nega­
tive curvature there exists no analytic contravariant tensor whatsoever. 

PROOF. For instance, in the case p = 2, if we put 

we obtain 

g - i ^ « g"g***ga*H;aiaUrtrt.'' + A 
where 

A » g"*g«**g***tWttP9<*w%. 
However, 

Ç <xict2,p,a* = = Ç<xict2tp,a* Çctict2,**$p = = SAo^"*^ aior*p ÇaiX-K- a^a*p 

— P X P X 

SXa2"^ paie* ÇaîkK-p a^a*» 

Therefore 

and the conclusion follows. 
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11. Meromorphic functions. We consider a (self-adjoint) vector 
field which in the neighborhood of every point can be represented in 
the form 

(65) J V - T ^ - ' r«--r«« — • 

It is not a local gradient field in the proper sense unless ƒ =ƒ; that is, 
if ƒ is real-valued, and in our application it will definitely not be so. 
We introduce the associate vector 

a/ «ƒ 

These two vectors are not subject to Lemma 4; however they have 
the following alternate properties 

fa,/3* = ty3*,a, fa,0 = Vfita** 

For ^ = 2gaPÇaÇp we obtain 

8 - ^ - A + B + C 

where 

B = g>*V^f«.P,^ 

C « g^g^ter.,.*-
If We Substitute f«,p,o« =fp,«,<r- = (fp,a,a* —&>,*•,«) + fp,<r*,« =&,*•,« 

—fxi?\>a<̂  we obtain 

B « r^>*Yp,**),«{> - #*W>, 

and if we put 

we obtain by Lemma 5 

c = r*V*V**),^«. 
Finally we introduce the assumption 

(66) r^P,** - 0, 

that is, 



1946] VECTOR FIELDS AND RICCI CURVATURE 793 

(67) A/ - 0. 

This will also imply gp°*rjP<,* * 0, and if for the sake of a later application 
we interchange the variables (za) and (za) we obtain the following 
lemma. 

LEMMA 9. If on a compact space with positive Ricci curvature a (self-
adjoint) vector field f »• has the property that in the neighborhood of every 
point the components f «• can be represented in the form 

df 
(68) f «. = — with A/ « 0 

dZa 

then f«* = 0, that is, ƒ is complex analytic. 
If the curvature is only non-negative then fa*,i = 0, that is, the dériva-

tives df/dza are not necessarily 0 but have covariant derivative 0. 

Finally we shall have the following theorem. 

THEOREM 6. If a compact space with positive Ricci curvature is sub­
divided into simplices 5i, • • • , St, iffçr each r, l£r£t, there is defined 
a meromorphic functional element <f>r(zi, • • • , zn) in some neighborhood 
Ur of the closure of Sr, and if each difference <t>P—<l)q is holomorphic in 
the intersection of Up and Uq (whenever not empty), then there exists one 
meromorphic function <£(si • • • 3n) in S such that, for each Ufi the dif­
ference $—<t>r is holomorphic. 

PROOF. The proof proceeds as follows. We replace each <£r in Ur by 
another function / ( r ) which has no singularities but which on the 
other hand may also depend on the conjugate values za. In other 
words, df(r)/dza need not be not equal to 0. However, each /(r) shall 
be a solution of the Laplacean A/ = 0, and the difference fip) —ƒ(«> shall 
be equal to <j>P—<t>q for all (p, q). If such f unctions ƒ (r) can be found 
then the components 

j - a , — ._—, a s- x, • • • , n, 
OZa 

are uniquely defined in S, and Lemma 9 applies immediately. Thus, 
for positive curvature, the components all vanish. In other words, the 
functions ƒ(r) are automatically analytic, and the expression 

$ = <t>P ~ ƒ(p) = <t>q — /(g) 

will define a meromorphic function in S. A similar proof holds for non-
negative curvature. Therefore the only remaining task is the con­
struction of the functions ƒ(r). This is a problem in potential theory 
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and has a solution in either real or Hermitian space. We shall only 
indicate its solution since an elaboration of details would lead us far 
afield. 

Suppose we are dealing with a compact w-dimensional space with 
a real positive fundamental form. We set up the Laplacean, and it is 
known12 that there always exists a Green's function G(x; £). I t has the 
proper type of singularity for x = £, and it satisfies the relation 

àjS(x; Ö « - 1. 

Let Sr and Ur have the same meaning as in the theorem and let Bpq 

denote the (w —1)-dimensional face separating Sp and Sqt if such a 
face exists. In the integral to follow each such face will appear twice 
with opposite orientations. Now, for each r, let <£(r) be an "arbitrary" 
function in Ur with "singularities. " By this we mean that it need be 
defined and differentiable only in some subset of £/r. However, the 
differences 

(69) <j>pq = <t>p — <f)q 

shall be each defined and differentiable in some neighborhood of the 
closure of Bpq. We now set up the Cauchy-Green integral 

1 V f V 7 A <* dG(x' Ö rt M * ^ ) \ ., — Z , I 2J l *p«(Ö —77 G(xt Q -—— )<7«. 
W p,q~l J Bpq M»«l V ^Ç/* "Cu / 

The symbol <7M denotes a certain invariant (m — 1)-dimensional ex­
ternal differential form, which in the Euclidean case is 

( - Wh • • • dS^idb+i • • - d£m% 

whereas co is a numerical constant. For variable x the integral as it 
stands defines a function in the interior of each 5 r . Denoting this func­
tion by f(r)(x), we can show that it can be continued beyond Sr 

through the interior of each (w — 1)-dimensional face, that f(P)(x) 
""*•ƒ<«) 0*0 has the value 4>pq(x) on Bpq, and that it is a solution of the 
Laplacean.18 All this would be true for arbitrary functions <t>pq(l~) on 
Bpqi but then/ ( r ) (x) need not be continuable through the interior of 
the boundary faces of dimension not greater than m —2. If however 
the prescribed saltus function has the special form (69) then f<r)(x) 
can be continued into an entire neighborhood of the closure of Sr, as 
needed. 

In our complex space with a Laplacean of Hermitian type the 
12 Compare, for instance, S. Bochner, Analytic mapping of compact Riemann spaces 

into Euclidean space, Duke Math. J. vol. 3 (1937) pp. 339-354. 
13 See the paper quoted in footnote 3, p. 657. 
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existence of the Green's function could be proven by an adaptation 
of the proof for the real case. However the duplication can be avoided, 
and the complex case can be directly reduced to the real case, if we 
make the additional assumption on S that it is basically a real space 
which in some of its allowable coordinates is also Hermitian. By this 
we mean that there exists a 2w-dimensional Riemannian space 5o 
which is in topological correspondence with 5. Each allowable coordi­
nate system in S is in correspondence with some coordinate system 
of 5o, and the Laplacean on S is a transcription into complex parame­
ters of the real Laplacean as defined on So. 

12. Subspaces of Euclidean space. The following statements are 
of a local character. Suppose we are given several analytic covariant 
vector fields in a neighborhood of n complex parameters. We denote 
them by f */«, where the subscript k identifies the vector, and we at­
tempt to define a fundamental tensor by the formula 

1 

*~1 

Our first concern must be to secure restriction (S3). The obvious way 
of securing it is to assume that we have 

d<f>k 

(70) ft,. = f-

where <t>k(z) is an analytic scalar, because in this case 

*^ST1F"( El**!1)-
dZadZp \ k / 

This is a crude way of securing (53) and there probably is some more 
elaborate condition ; we shall deal with it nevertheless, since geometri­
cally it corresponds to a mapping of our z-neighborhood into a W-
neighborhood by the functions Wk=(t>k(f)* 

THEOREM 7. If 

Wk = 0*(*1 • • • *n)f k = 1, • • • , /, 

is a parametrization of a subspace of Euclidean space, then its Hermitian 
tensor 

,* d<f>k d$k 

&*»! OZa OZa* 

generates a negative Ricci curvature. 



796 S. BOCHNER [September 

PROOF. If we evaluate the determinant G of gap then we find for its 
value the expression 

(71) 
Ci,h __ 

p - i 

where each Dp is the value of some n-dimensional determinant of the 
n by / matrix 

(72) 

We now put 

d<t>k\ 

dza* 
a = 1, n; k = 1, , / . 

Rap = 
dUogG 

dZaàZfi 

and form the sum 

(73) RapXW 

for an arbitrary complex number Xa. Now, if we carry out the differ­
entiations and if we put 

dD* 
i ? » - — — X « , 

OZa 

then it turns out that the sum (71) has the value 

and this is non-negative. Also, if the matrix (71) has rank n, this must 
be strictly positive for some Xa, as claimed. 

For the positiveness of (71) it is not necessary to assume that our 
vectors have the special form (70); however in general the matrix 
(73) is not the Ricci tensor and has no immediate geometrical inter­
pretation. 

13. Commutative analytic groups. We now assume the existence of 
contravariant analytic vectors f£ and we set up the corresponding 
tensor 

* » l 

If we denote its determinant by H, then by our last remark the 
matrix 
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Ô2 log H 

dZadZfi 

is positive definite. If we introduce the inverse tensor gaf, then 
G—H"1, and this would prove that the Ricci curvature is positive, 
provided gaf satisfies restriction (S3). Now the identity 

€*a a 

gfisg = h 

implies 

or 

In 

wh 

applying (S3) 

-T— gta + g(* 
OZy 

dgW 
— = - g/9« 
OZy 

we hence obtain 

dzf 

ich is equivalent with 

dg1'" 
„ 

OZy 

dg''" 
» 

OZy 

dg** 

dzp 

= 0 

gaf-

g"' 

Z
VJp fi —^ 0$q /J 

"7 f 5>f «f « ** Z-f "T f «f pf 5>* 

The only obvious way of securing this relation is to assume that 

df P j df « 0 _ 

OZp OZp 

for all a, pt q. But this is the classical condition for commutative 
groups. Thus if the rank of the matrix | Jj | is n, and the group opera­
tors are commutative, they give rise to an Hermitian metric with 
positive curvature. 
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