
WATER WAVES ON SLOPING BEACHES 

HANS LEWY 

1. Introduction. Consider the time-dependent velocity potential 
<t>(x, y, t) of the motion of an incompressible in viscid liquid in two 
space dimensions x, y. The Newtonian equations and the condition of 
incompressibility lead to the following mathematical model: La­
place's equation 

(1.1) _ 1 + - J ! l = 0 
dx2 dy2 

and Bernoulli's law 

(i2) s+((2) ,+(57)y2+8y+'-const-' 
relating the pressure p and the gravity potential gy per unit mass to 
the velocity potential; here the #-axis is horizontal, the y-axis vertical 
and upwards and g is the modulus of gravity acceleration. At the 
boundary of air and water the pressure is supposed to have a con­
stant value po\ thus (1.2) relates implicitly the surface elevation y to 
the velocity potential. A considerable simplification is introduced by 
assuming the motion to be small of first order so that in (1.2) the 
quadratic terms may be cancelled. Then the motion becomes a small 
perturbation of the equilibrium position in which the surface will be 
thought of as given by y = 0. For small elevations of the surface one 
concludes from (1.2) that, but for terms of higher order, 

(1.3) y = y(x,t) = - — (*,0, /) /g, 

where the constant on the right hand has been absorbed in a properly 
modified <t>. To this equation is added the condition that a particle 
at the surface remains at the surface; that is (using the "substantial" 
time derivative of (1.2)), 

(1.3.1) dy(xy t)/dt = - — - / g = d<t>/dyf 

at1/ 
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where terms of second order, such as (d2<l)/dxdt)(d^>/dx)f have been 
dropped in comparison with d2<j>/dt\ 

Among these infinitesimal motions the periodic motions are of par­
ticular interest. Set 

(1.4) 4>{x, y, t) =» <f>i(xt y) cos vt — <£2(ff, y) sin vt, 

where v>0 is the so-called circular frequency. From (1.1) we take 

(1.5) (d2/d2x + d2/d2y)<t>x(x, y) » 0, (d2/d2x + d2/d2y)<j>2(x, y) = 0; 

from (1.3) 

(1.6) y = y(x, t) « (v/g)<f>i(x, 0) sin vt + (v/g)<t><t(x, 0) cos vt; 

from (1.3.1) 

/< * is (?*/s)(<l>i(xf °) c o s vi "" *»(*» °) s i n "') ( l .o. 1) 
= {d<t>i/dy) cos itf — (dfa/dy) sin j>£. 

Special cases occur if one of the two functions <JÊ>I, fa, say fa, is taken 
identically zero. Then the crests or troughs and the nodes of the oscil­
lation retain their fixed positions in space. Crests or troughs of the 
surface elevation occur where dfa(x, OJ/dtf^O, nodes where fa(x, 0) 
= 0. Such a periodic oscillation is called a "standing wave" in con­
trast to the more general case of a "progressive wave," where the 
crests and troughs and the nodes change position with time. For the 
horizontal velocity component i w of the surface nodes we write 
(1.6) in the form tan vt~ — faix, 0)/fa(x, 0) or J>/ = —arc tan (fa/fa); 
differentiation with respect to t yields 

tW = v/{{d arc tan fa/^/dx). 

Similarly the horizontal component vct of the crest or trough velocity 
is found to be 

/ / / j dfa / dfa\ j \ 
%t = v / 1 I a arc tan / ) / ax ). 

/ V A dx/ dx// ) 
Both fa(x, y) and fa{x, y) are solutions of the same problem 

(1.7) d2<f>/dx2 + d2<t>/dy2 = 0 

throughout the liquid, 

(1.8) v2<f>{x, 0)/g « — (x, 0) 
ay 

at the surface. 
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One of the fascinating problems concerning waves is the discovery 
of the influence of the depth of the water on the shape of the wave 
profile. Take first the classical case of infinite depth. To (1.7) and 
(1.8) is added the condition that the magnitude of the motion de­
creases to zero as y—> — 00. Out of the manifold of all harmonic func­
tions the real and imaginary parts of 

exp (- i(x + iy)v2/g) 

are taken as solutions <£i and 02 of (1.7) satisfying the boundary con­
dition (1.8). With these is constructed the progressive wave 

4>(x, y,t) = R exp (— i(x + iy)v*/g — it) = exp iy2y/g) cos (v2x/g + vt)> 

which is periodic in x as well as in t; the nc-period is 2rg/v2, the 
/-period 2w/p. The wave profile travels unchanged in form in the di­
rection of diminishing x as t increases; the velocity of the profile is 
*>nod = *>cr= — g/v and depends therefore on the frequency. 

Airy was the first to give a treatment of the infinitesimal gravity 
waves in a channel of constant finite depth ; his results are the founda­
tion of our knowledge on gravity waves. Again as in the case of infinite 
depth, the profile of the progressive wave moves, unchanged in form, 
with constant velocity. But the wave velocity depends on both the 
frequency and the depth of the channel, and so does the space period 
of the wave. Airy's formulae show with great clarity the passage from 
waves in water of finite depth to the well known limit theory of shal­
low water waves in whose treatment the dependence of the pressure 
and velocity on the depth is assumed rather than derived. 

The problem whose solution forms the object of this paper is the 
construction of progressive water waves when the depth, instead of 
being a constant, has a constant slope. This problem was first at­
tacked by E. T. Hanson1 in 1926. He assumed the angle of the bottom 
with the surface to be of the form ir/(2q) with integral g, and gave the 
expression of one standing wave <f>i(x, y) in terms of exponential func­
tions, without, however, constructing the progressive wave which 
requires the derivation of a second standing wave faix, y). M. Miche2 

quotes an explicit form of this second function 02, which he calls 
"houle, " to distinguish it from 0i, called "clapotis. " For the derivation 

1 E. T. Hanson, Proc. Roy. Soc. London. Ser. A vol. I l l (1926) p. 491. 
2 M. Miche, Mouvements ondulatoires de la mer en profondeur constante ou décrois­

sante, 1945, p. 88. This booklet also contains a most interesting report of various in­
vestigations of M. Miche, relating to the breaking of waves. See also M. Miche, 
Annales des ponts et chaussées, 1944, pp. 25-78, 131-164, 270-292, 369-406. Unfor­
tunately, by the time of printing of the present paper, the author had had no oppor­
tunity to consult these latter articles. 
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of his formula he refers the reader to a paper to appear in the Journal 
de mathématiques pures et appliquées; also his result is restricted to 
angles of form w/(2q). 

We shall give in this paper an explicit representation in closed form 
for a progressive wave for all angles pir/(2q) between bottom and sur­
face, provided p and q are integers, p is odd, and p<2q. The functions 
involved in our formulae are exponential functions and exponential 
integrals of certain special types. (Unfortunately, the number of in­
dividual terms occurring in the solution becomes large as p or q 
become large.) In the course of our investigation we are led to the 
discovery of a strange and recondite relationship of these waves with 
the quadratic reciprocity law of number theory. In fact, this law ap­
pears as an elementary consequence of the continuous dependence of 
the finite standing wave on the angle between surface and bottom. 
We do not go here more deeply into the discussion of certain number-
theoretical problems immediately suggested -by this relationship, nor 
do we investigate the continuity of the waves as functions of the 
angle, for which there appears to exist a more direct approach than 
through our explicit expressions for these waves. A further topic left 
untouched is the extension of the principles of construction discussed 
here to the study of the three-dimensional wave problem where the 
wave crests are no longer parallel to the shore. 

The complexity of our formulae for the waves for large p or q and 
the scarcity of suitable tables of exponential integrals make the evalu­
ation of these waves a problem of considerable difficulty. I t seems 
important to compare the "exact" theory of infinitesimal waves with 
other approximations such as the shallow water theory, in order to 
gauge the differences of the results furnished by the various theories. 
These problems, for angles ir/(2q), are attacked by M. Miche (loc. 
cit.) and by J. J. Stoker in a paper under press. 

2. Reformulation of the standing wave problem. The units of 
length and time will now be chosen so that 

g = 1 and v = 1. 

Set 

x + iy = z = eie 

and let 

P = Trp/(2q), p odd and relatively prime to q, and 0 < p < 2q. 

Denote by Sp the angular sector O > 0 > — /3. The problem of the stand­
ing wave for Sp consists in finding a harmonic function cf> in Sp satis-
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ƒ.' 

fying the following boundary and limit conditions, to be stated first 
for the case p g q : 

1. d<f>/dy-<l) = 0ony~0, x>0; 
2. The normal derivative 30/öw = O on the bottom of Sp; 
3. <j>—A cos x — B sin x—*0 for suitable constants, not both zero, A 

and B, as x—» 00, y = 0 ; 
4. The square of the particle velocity, (30/d#)2 + (3$/3;y)2, remains 

bounded as z tends to 00 in Sp; 
5. The flow through any vertical section 

d<f> 

- * t a n / S C?# 

remains bounded as #—•» 00. 
To these conditions must be added one concerning the behavior of 

<t> and its derivatives at the shore (0, 0). We shall see that there is one 
standing wave where 

6a. <f> and d<j>/dx, d<f>/dy remain bounded as (x, y) tends to (0, 0), 
and another where 

6b. </> behaves like log(x2+y2) near (0, 0). 
A solution of the above problem, if it exists, may be considered as 

the real part of an analytic function W(z) in Sp. I t can easily be con­
cluded that W(z) remains bounded as 3"—»oo. For this purpose con­
sider the conjugate harmonic \(/. Since the normal derivative of <f> 
vanishes on the bottom of Spf so does the tangential derivative of the 
conjugate \//, whence ^ is a constant there. But 

— (*> y)dy 
-*tan/3 ay 

J ° d<l> 
— (*. y)dy. 

— z tan /? dx 

so that ypix, 0) remains bounded at the surface as x—»<*>, by virtue 
of the 5th condition. From the 4th condition it follows furthermore 
that I W(z)\ can grow at most like const . |s | as z—><x> within Sp. But 
then the Phragmén-Lindelöf principle applies and yields the bound-
edness of | W{z) \ for z—> 00 in Sp. Indeed, for the application of this 
principle it is not at all necessary to demand the condition 4 which 
states that | W'Os)! remains bounded as z—»<*> ; but it suffices to de­
mand, besides 1, 2, 3, 

4 ' . I W(z)\ < e x p | s | 1 + e as z-*<*> in Sp, for all e>0 , 
together with 

5'. I W(z)\ remains bounded on the surface as z~x—><*>. 
For then the principle states that | W(z) \ remains bounded as 0—>oo in 
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SB* If p <<Z, then 4' and 5' imply 4 and 5. For it is then possible to ex­
tend W(z) analytically by reflection on the bottom of SB where condi­
tion 2 holds; and the double angle 2(}~Trp/q is still less than w. In the 
process of extension any bound for the absolute value of W{z) on the 
surface of SB becomes a bound for | W(z) | on the bottom of S%B- Ac­
cordingly, | W(z) | remains bounded on the boundary of S^a as z—> <*> 
and furthermore | W(z)\ < e x p | s | 1 + < as s—»<x> in £20, €>0. Moreover, 
W(z) can be continued analytically across y = 0, since this is true for 
the function F{z) zzidW/(dz) — W whose real part vanishes on ;y = 0. 
A bound of | F(z) | f or y g 0 becomes at the same time a bound of 
I F(z)\ for y>0. Let | W(z)\ S M for y ^ 0 , x sufficiently large; then 
\dW/dz\ SM/\y\ by Cauchy's integral theorem. Describe a hori­
zontal-vertical square Q of side 4 about a point #0 of the surface as 
center and consider Fi(z) = F(z)(z—XQ—2)(Z—XQ+2). On Q we have 
I Fi(z)\ S54M; hence we conclude for \y\ ^ 2 that | .Fi(ffo+i:y)| 
gS4M, where \F(x0+iy)\ £S4M/(\iy-2\ | f y + 2 | ) ^ 1 4 M , and, 
finally, from the definition of F(z) and the bound M for | W(z) \ 
= I W(x0+iy)\ that \dW/dz\ ^15M for x0 sufficiently large, -2£y 
2SO. For y< — 2 Cauchy's estimate gives immediately \dW/dz\ ^ Jlf, 
so that \dW/dz\ remains bounded in SB- Hence 4 and 5 are conse­
quences ef 1, 2, 3, 4', 5'. 

If p is no longer less than q, but p<2q, we shall still be able to ex­
hibit a solution W(z) of the wave problem satisfying 1, 2, 3, 4' , 5 ' ; 
but we shall then show explicitly that | W(z) | remains bounded on 
the bottom of SB as z—» 00, a fact which, as we have just seen, follows 
from the Phragmén-Lindelöf principle for p<q. 

Let X be an arbitrary complex number of modulus 1, and let d<j>/ds 
stand for the derivative in the direction of the vector X. Then 

dRW/ds = d<f>/ds = RdW/ds = R{\dW/(d\s)} = R{\dW/dz}. 

Accordingly, the condition 1 may be rephrased as 

(2.1) R{(id/dz- l)W(z)} = 0 

on y = 0. Similarly for condition 2 : set 

(2 .2) 61'2 = r*«, € = e-w « *-»*«'«; 

then this condition becomes 

(2.3) R{kllHW/dz) = 0 on 0 - - 0 - - irp/(2q). 

We furthermore see that reflection on the bottom of SB yields 

(2.4) £ { ( - ied/dz - l)W(z)} = 0 on 0 = - 2/3 = - irp/q. 
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3. Derivation of an ordinary differential equation. Let ƒ($) and g(£) 
be polynomials with real coefficients. Then, by (2.1), 

(3.1) R{f(d/dz)(id/dz - l)W(z)} - 0 

on ;y = 0, and by (2.4), 

(3 2) *(d/a,)dRK~ ied/dz ~ 1)W(z)} 
« R{g(ed/dz)(- ied/dz - l)W(z)} = 0 

on 0 = —2^3. Suppose we succeed in solving the identical equation 

(3.3) AÖ(« - i) - *(«Ö(-«-1); 

then 

f(d/dz)(id/dz - l)TF(s) 

becomes a function E(z), regular within the sector O > 0 > — 2j3, and 
whose real part equals zero on the boundary of S20 (with the possible 
exception of the origin). Now all such functions E(z) are known ex­
plicitly. Our problem thus becomes that of solving an ordinary differ­
ential equation 

(3.4) f{d/dz){id/dz - l)W{z) = £(*) 

for an appropriate E(z)f and of choosing from the manifold of its 
solutions one, W(z), such as to satisfy the boundary conditions (2.1) 
and (2.3) as well as certain conditions concerning the behavior of 
W(z) near z = 0 and z = 00. 

4. Derivation of ƒ(£). 

LEMMA. There exist polynomials ƒ(£) and g(£) satisfying (3.3) and 
of degree q — 1. They are uniquely determined by requiring the degree to 
beq — 1 andf(0) = 1. Furthermore f (£) 3=g(£). 

The following proof is valid only if p is an odd number. This is the 
reason why our explicit construction of waves fails if p is even. 

Let 

( . ƒ(£) 8Bflo + fli{+,"i ao = 1, 

«(ö = to + hi +.. • . 

The identity to be solved is 

(4.2) ( « - 1)(1 + ^ + . . . ) = ( - U£ - i ) ( j 6 + b£+...). 

Compare coefficients and find 
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i — ai = — iebo — Ji€, 

(4.3) , 

ia*..! - an = - *6n4„_i - in€
w, 

The imaginary part of the left-hand side is an-i and may be considered 
known from the preceding equation of the recursion. The imaginary 
part of the right-hand side involves &„_i and bn* Now bn-i also may 
be assumed known from the previous equation. Consequently bn is 
determined by equating imaginary parts, provided I(€n) 5^0, that is, 
for all n with 0<n<q, since p and q have no common divisors. Once 
bn is known, we take the value of an from the same equation by equat­
ing real parts. Thus the recursion furnishes in a unique way all co­
efficients an, bn for n<q. There is a further condition to be satisfied 
to establish (4.2), namely, (4.3) for n~q, which becomes 

(4.4) iaq^i — aq = — iegbq^i — bqe
q. 

Since €«= — 1 for odd p, this implies 

aq~i = bq-i; 

if this is so, we may assume all further coefficients aq,bq, aa+x, 6fl+i, • • • 
to vanish. Now observe that ao^&o^l , and that the nth recursion 
formula (4.3) may be satisfied by setting an = &„, provided it is true 
that an_i = &n_i. Indeed, the uniquely determined solution of the re­
cursion formulae can be found from the recursion 

fl»(l ~ €w) « aw_iz(l + €"). 

This gives for a„ the nonvanishing value 

(4.5) an = an-!*(l + c")/(l - c»), 

which is indeed real since the vector 1 — en is perpendicular to 1 +€n . 
This holds provided e ^ l , that is, as long as np/q9é2k with integral 
k] hence certainly for odd p and 0<n<q. Notice that (4.5) can also 
be written as 

n 

(4.5.1) an = an_i cot (npw/2q) = H cot (kpw/2q), for n ^ 1. 
J b - 1 

If we had permitted p to be even, then q would necessarily be odd 
and we would have eq = 1 ; in this event (4.4) would yield 
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t-0g-i(l + eq) = 2aq~ii = aq — bq T* 0, 

which cannot be solved with real aq~\, aq, bq. 
Thus we have found 

ƒ(*) = «(*) » 1, for q - 1, 

ƒ«) = *tt) = 1 + 2 *'n£n U | ^ T ' for ; £ 2. 

LEMMA. Let q> 1. TTte rtrate o//(£) are 

— ie, — ie2, • • • , — ic*""1; 

/Aey are conjugate to and, as a set, identical with 

i/e, i/e2, • • • , i/e*-1. 

In fact, since by (3.3) 

(4.6) ($ - !)ƒ(£) = ( - «* - DM), 

it follows that the root of the right-hand side £ = i /e must also be a 
root of ƒ(£) since it is distinct from — i. But as all coefficients of ƒ (J) 
are real, the conjugate —ie is also a root of / (J) . Substitute £= —ie 
on the right; then either e2= — 1 or ƒ( —ie2)=0. Hence either g = 2, 
or — ie2 is a root of ƒ(£). In the latter case put £= —ie2 in (4.6) and 
find either e3 = — 1, <z = 3, or ƒ(—ie3) = 0 . Repeating this procedure we 
find that the complete set of roots of ƒ(£) is given by £=— ien , 
n~l, • • • , g — 1 . Hence 

where 

c-i = /(0)/c = J ! (ien) = i«-i€«(«-i)/2 = ( _ i)(p-i)(«-i)/3f 

n«l 

in view of (2.2). Thus 

(4.7) /(Ö - ( - 1)(H)H)/2J[ (J + fcn). 
n«l 

Upon combining factors which contain conjugate roots of ƒ(£), we have 

ƒ ( - i) = ( - l)(P-i)((r-D/«(- f- + fc)(- f' + ^a-1) 

If g is odd, we have (q — l)/2 such pairs of factors; if q is even, we have 
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(g —2)/2 such pairs and the factor — i +ieqf2. Now suppose first that 
both roots entering such a pair (for example, — ie, — ieq~l) have posi­
tive real part. Then the argument of the product of such a pair re­
mains the same if both roots are replaced by + 1 ; that is, the argu­
ment of the product of such a pair of factors is 7r/2. If, on the other 
hand, both roots involved lie on the left of the imaginary axis, the 
argument of such a product remains the same if both roots are re­
placed by — 1, which gives precisely — TT/2; and no root i/en=+it 

since 0<n<q. 
Accordingly, for odd qy 

ƒ( — i) = ( — l)0>-D(fl-D/2(— ^)a(î>,a)0-»i(«-l)/4r> 

where r > 0 and a(p, q) is the number of roots of ƒ(£) with positive 
real part* I t is easily seen that this formula still holds good for even q. 
To determine r, we note that 

« - 1 

n a - <w) i 

2 g - 1 

n (i - «*xi - <-) 

1 / lo-a 

d /x2q - 1\ 

\dx\ x + 

so that 

(4.8) ƒ ( - i) = (— i)<*-i><«-D/*(— i)«(p.«>e-™(a-i)/y/2# 

The number of terms with positive real part in the set i/e* is the same 
as the number of terms among c1' with negative imaginary parts. 
Note that 

e*ip]lq . erip(q-j)/q Œ — j ^ 

Hence, if eripilq has a negative imaginary part, so does e*ip(q~~i)fq. Thus, 
for odd q, a is even and (—i)«(p,«) = ( — !)#<*.«), where N(p, q) is de­
fined (for q odd or even) by 

N(p, q) = number of terms with negative imaginary parts in the 
(4.9) 

set erip>'lq with f integral and 1 g ƒ < q/2. 

For even q, setting j = q/2 makes evipjlq equal to ip, while for j 7^ q/2 we 
have the same fact that both e*ipilq and evip{q~^lq have negative imagi­
nary parts or both have positive imaginary parts. Accordingly, 

/ ( — i)N(p,q) ( — l)*<*.«>f for £ s 1 (mod 4), ç even, 

for p = 3 (mod 4), q even. 
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Hence, from (4.8) we can conclude 
r ( _ i)y(p lfl)er»<(<r-i)/4ji/2 f for q e v e I 1 | p s j ( m 0 ( i 4 ) f 

(4.10) ƒ ( - 0 = j ( - l)*<p.«>&-**<*-i>/y/»f for ? even, ƒ> s 3 (mod 4), 
[ ( _ i)N(P,q)e-Ti(q-i)/4qi/2t f o r g o d d # 

Another property of ƒ (£) is 

(4.11) a, - a ^ w ( - 1)(P~I)(«-D/2, j = 1, 2, • • • , q - 1. 

In fact, the roots of ƒ(£) are simple and contain the reciprocal of each 
of them, whence 

£ * - l / ( r i ) « ( _ l ) ( ^ D ( a - l ) / 2 / ( ö . 

5. Real independence and semi-independence. The following def­
initions are variants of the notion of linear independence; they are 
introduced in order to simplify the formal part of our computations. 

DEFINITION, n complex-valued functions Fi(x), • • • , Fn(x) on a 
range of the variable x shall be called "really independent" on this 
range if the relation 

*|Z^W*)} =0 
with complex coefficients Av implies 

A\ =• A2 = • • • = An = 0. 

If and only if the Fv(x) are really independent, the In functions 
RFv(x) and IFv(x) are linearly independent in the ordinary sense em­
ploying real coefficients. 

LEMMA. Let Fi(x), • • - , Fn(x) be really independent. Then a relation 
with complex coefficients a¥1 &„ 

(5.1) RI £ («ƒ,(*) + bf,(%))\ = 0, 

implies 

(5.2) a, + h, = 0, v = 1, • • • , n. 

In fact, 

0 = R{ E W(«) + bvF,(x))} m R{ E (a, + S,)*V(«)} • 
This identity shows that (5.1) follows from (5.2), no matter whether 

the F„ are really independent or not. 
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DEFINITION. If Fi(x), • • • , Fn(x) are complex, F(x) real, and such 
that 

BFfa), • • • , RFn(x), IFi(*)f • • • , IFn{x)}F(%) 

are linearly independent, we shall call Fi(x), • • • , Fn(x), F(x) "really 
semi-independent. " 

LEMMA. A relation for complex coefficients avi bV} a, 

av + h = 0, v = 1, • • •, n, 

a + a « 0, 

(5.4) RI £ (<*ƒ,(*) + fc7,(*)) + aF(*)| = 0. 

Conversely, (5.4) implies (5.3) $ƒ /fo <Fv(ff) ÖWJ i 7 ^) ar£ ?w//;y semi-
independent. 

Notation. In order to simplify the printing, we shall often make use 
of the following notation. Let 71 and 72 be two complex quantities. 
We write 

in order to express that 71 and 72 are complex conjugate. 

6. Integration of (3.4) for £ (2 )=0 . Writing (3.4) in the form 

(6.1) 

where 

(6.2) 

we obtain 

Note that 

(6.3) 

whence 

H (d/dz - ej)W(z) = 0, 

a. = i/€i = ie*Ml*9 

W(z) = E c&i*. 
7 - 1 

07 ^ <r3-/, 

£<rj% C ^ />aQ~ ix 

j = l, • • • , q, 

j = 1, • • • , q - 1, 
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for real*. For odd 5 the e*'* (j = g, g — 1 , • • • ,fi — ( 2 - l ) / 2 » ( g 4-l)/2) 
are (q + l ) / 2 really independent functions, for even q the en* 
(7 — 2» 2~"1> • • • » 2/2 +1) and e'/** are g/2 +1 really semi-independ­
ent functions. Both statements follow from the nonvanishing of the 
Wronskian of e***, • • • , «*«*, which in turn is a consequence of the 
nonvanishing of the Vandermondian of the q distinct numbers 
0*1, • • • , <rq. In fact a linear form 

where sv = cr„ can be written as 

(1/2) • £ ( (4 , + 3,)e"- + ( X + B,)*") . 
1 

The Cj are determined by the boundary conditions (2.1) and (2.3). 
We find 

(6.4) 0 = R{idW/dz - W) = R< £ (tV, - l ) c ^ 4 , on y = 0, 

and 

(6.5) 0 « l î j & ^ W / i f a } = JR< £ * V > V ^ 4 , on s = | z | e1'2. 

Applying the lemmas about real dependence resp. semi-independence 
in case q is odd resp. even, we obtain as necessary and sufficient con­
ditions for the validity of (6.4) 

(6.6) cfavi - 1) = - cg-j(i<Tq^ - 1), j = 1, • • • , q - 1. 

Note that , for j = g, we have i<rq — 1 = 0 . In order to exploit (6.5), ob­
serve that by (6.2) 

(6.7) « r * - * * 1 ' 1 ^ * 1 ' 1 , y = 1, . . . f ? . 

Hence (6.5) implies 

(6.8) ie^a^+xc^+t S - ie1 '1**/, 

which reduces to 

€crq-i+iCq-j+i = <rq~jCj 

or 

(6.9) c ^ / + 1 = c,-, i = 1, • • • fq. 
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The equations (6.6) and (6.9) determine the ct but for a real factor 
independent of j . We conclude directly 

(6.10) t^i « cricri - 1)/(*V, + 1 ) , j = 1, • • • , q - 1, 

or 

(6.11) cj+i = Ci(i*i - 1)/(*V/ + 1 ) , i = 1, • • • , q - 1. 

The equations (6.11) are recursion formulae. They do not exhaust the 
implications of (6.6) and (6.9). Let q be even, and apply (6.10) with 
j = g/2 and (6.2): 

Cql2 = * f„(l + €-*/2)/(<-«'2 - I)-

Now e-«/* = e*ip/2 and p is odd. Hence 

(6.12) cq/2 = cq/2i~p, for q even. 

Let g be odd, and put j = (g + l ) / 2 in (6.9): 

(6.13) C(q+i)/2 = £(<H-i)/2i or £<<H-i)/2 is real for q odd. 

Formulae (6.12) resp. (6.13) together with (6.11) show that the Cj are 
determined but for a constant real factor. 

To compute the cy, we observe that they are related to the coeffi­
cients dj-i of ƒ(£) in a simple manner. In fact, we had (4.5), 

a,- = a^iiiX + €0/(1 - e0, 

and (6.11) which can be written 

cm - cj(l + €0/(1 - €0, j = 1, • • • , q - 1. 

Hence 

Cj+i/aJ « — icj/aj^u 7 = 1, • • • , g — 1, 

and 

(6.14) cy == ÖJL.I(- *)>d, y = 1, . • • , q, 

where d does not depend on j . The absolute value of d is irrelevant, 
but its argument is of importance. Take q even and apply (6.12); 
we find 

cq/2 = evipIir, 

with a real factor r. Substitute this value of cq/2 in the formula (6.14) 
forj~q/2 and remember that all the coefficients a,- are real. We find 

(6.15) d -» ew(p+« ) /4, for g even. 
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Next take q odd. Then, by (6.13), (6.14), 

(_ i)(«+i)/y- real, 

and 

(6.16) </ = <<*H>/*f 

From (6.14), (4.1), (4.10) we compute 

for q odd. 

1 

(6.17) f > , -

( _ 1)^(3-^)^1/2 , for q odd, 

(_ i)ff<,.,>+<p-»/y/», for q even, ƒ> • 1 (mod 4), 

[ (_ i)w(p.«>+(iH-»/y/», for ç even, f - 3 (mod 4). 

Furthermore, by (6.14) and (4.11), 
/ ( _ fle-D/i, for? odd, 

(6.18) cfl = < 
{ie-*i(p+9)i*f for g even. 

Accordingly, our solution W(z), designated henceforth by Wo(z), is 

(6.19) Wo(z) = 

with 

«-1 
(_ j)<«-i>/v<.+ ;(*+i)/2]T ( - f)/aiexp [&«*"*/«], 

if g odd, 
<r-i 

i - i 

if g even, 

ai = II c o t (npTr/2<l)> ao = 1. 
n=l 

In order to see that the coefficients c, actually satisfy (6.6) and 
(6.9), we notice that these relations contain at most 2g —1 linearly 
independent real equations, while on the other hand their conse­
quences (6.11) and (6.12) resp. (6.13) are precisely 2q — l linearly 
independent relations. Thus the number of linearly independent equa­
tions (6.6) and (6.9) is 2 g - l , and they follow from (6.11) and (6.12) 
resp. (6.13). 

7. Behavior of Wo(z) for z—*oo. For the applicability of (6.19) to 
the wave problem the behavior of Wo(z) at infinity is of importance. 
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Now the moduli of the terms under the sum in (6.19) tend to zero or 
infinity as z=#—> «>, according to whether R {ieivpilq} < 0 or > 0. Fur­
thermore, it is readily seen that the modulus of the sum cannot re­
main finite unless all terms tend to zero. Now let Kp<2q and 
consider the angles 

(7.1) pv/q, 2pT/q, • • - , ( ? - l)p*/q, 

and their conventional representation in the unit circle. Among them 
there is at least one whose second side lies in the third or fourth quad­
rant. This is evident if p >q, because pir/q has this property. For p <q 
we remember that there are at most (q — 1) positions available in the 
first and second quadrants, namely those of 

w/q, 2ir/q, • • - , ( ? - l)*/q. 

If our contention were wrong, they would have to be filled each by a 
member of the set (7.1), since no two of them can occupy the same 
position by virtue of the fact that p and q are relatively prime. In 
particular there would be one, say kp7r/q, which occupies the same 
position as (q — l)w/q. Hence kp=*q — l +nq with even n. Here k j*q — 1 
since otherwise p — 1 becomes divisible by q in contradiction to p <q, 
g > l . But now (k +l)pr/q is among the angles (7.1) and its second 
side is identical with that of 

(q - 1 + p)r/q - (1 + (P - l ) / j )x, 

which lies in the third or fourth quadrant. 
From the foregoing we gather that, for Kp<2qf there exists a j 

with ISjSq — 1 for which R{ieirjp/q} >0. Accordingly Wo(x) does 
not remain finite as #-->oo in contradiction of the condition 5 ' of §2. 

For />«1 , however, R{iew>***} < 0 for j = l, 2, • • • , g - 1 , and 
Wo(x) remains finite as x~»<*>. Hence RW0(z) represents a standing 
wave for p~l, it is free of singularities and behaves for z—>oo like a 
simple standing wave in water of infinite depth. More precisely, 

RW0(z) ~ R{e-*i{q-l)f*e-iz}, for g odd or even, 

and the complex factor #-**'<«--i)/4 is decisive in the location of the 
nodes of this simple wave. These nodes lie at # —( — (# —1)/4 -fw)7r 
with integral n. Accordingly, an increase of one unit in q makes the 
nodes of the simple wave move one-eighth of a wave length toward 
shore, if only angles j3 of the form ir/2q are considered. 

The standing wave RWo(z) was given by E. T. Hanson.3 As we have 
proved, the angles j8 of the form ir/2q between surface and floor of the 

8 Loc. cit. 
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ocean are the only ones for which it will satisfy the condition of finite-
ness at infinity. 

For the construction of a progressive wave, Hanson's standing wave 
furnishes only one component for /> = 1. For this construction re­
quires the exhibition of a second standing wave of the same period 
which at large distance from the shore becomes a simple wave whose 
nodes lie midway between those of the first component. 

Plan of the following investigation. The assumption E(z) = const, un­
derlying the preceding section is a special case of (3.4). More gen­
erally we can take 

E(z) = iz2k«'*>, k = 0, ± 1, ± 2, • • • . 

All these choices may be expected to lead to a solution W(z) of (2.1) 
and (2.3), that is, to a W(z) satisfying the boundary conditions. But, 
generally speaking, these W{z) do not satisfy the condition of finite-
ness at infinity, and some have too large a singularity at the origin. 
Our plan is to obtain suitable superpositions of the various solutions 
which insure finiteness at infinity, indeed two independent such super­
positions, so as to enable us to prescribe the location of the nodes of 
the simple standing wave to which they become asymptotically equal. 
It is remarkable that this procedure proves successful, in that the 
number of conditions to be satisfied is larger than the number of 
available constants. Consequently, it becomes necessary to investi­
gate in detail the asymptotic behavior of the solutions to be con­
structed, and the algebraic character of the conditions which enforce 
finiteness at infinity. 

The result will be that for all angles j8=7r/>/2g, l^>p<2q, p odd, 
there exist two standing waves, $i and #2, one which remains finite 
at the shore (and whose derivatives of first order (the velocity com­
ponents) remain finite), the other having a logarithmic singularity 
at 2 = 0 (resp. having a velocity which becomes infinite like 1/| z\ ). 

8. Properties of exponential integrals. Unfortunately, the con­
struction of waves runs in a similar, but not identical, pattern when 
p ssl (mod 4) and when p s 3 (mod 4). This necessitates two parallel 
sets of formulae for certain parts of the following investigation. 

We begin with p*s3 (mod 4). Let a ^ 0 and consider the integral 

e-'Mt, 

where 

(8.2) X = (2kq/p) - 1, k = 0, ± 1, ± 2, • • • • 



754 HANS LEWY [September 

The integral is a multi-valued function of z, but a single-valued func­
tion of log 2, once log 07 and the path of integration on the Riemann 
surface of log z have been fixed. We shall take log z real for z=x>0 
(on the surface) and set, generally, 

(8.3) f - l o g » 

and 

(8 .4) 77 = log 07 

with 

(8.5) 17 « - piri/2 +jpwi/q, j = 1, • • 7 g. 

This choice of the 17 has been made with a view to establishing for 
the 77 the same relations of conjugation that hold for the 07. In fact, 
the analogues of (6.3) and (6.7) are 

(8.6) TV.,- = pwi/2 - jpiri/q = 77, 1 ̂  j < q, 

and 

(8 7) T ' ~ ^ i / ( 2 ^ — #7r* /2 " pV " 1/2)T ' /» " r«~>+1 " ^i/(2(?), 
1 ^ i £ q. 

Accordingly, let the path of integration start at that point a which 
belongs to a real value of log a and end at that point <rjz whose log is 
f -f 77, and define 

(8.8) ZXi,/r) «^•J^Vv*. 

For real log 2, that is, for z=x>0 (on the surface), this function satis­
fies, because of (8.6) and (8.7), (8.3) and (8.4), 

(8.9) W D S Z W i G O . 

For f = log 2 = real—ipw/2q, that is, for z~relf2
f r>0 (on the bottom), 

(8.10) W f l S W ^ t t O . 

We find the differential equation 

(8.11) (d/dz)U^) - erjLx^OO = <r)+V - *-ie<r4*/>t*«/*f 

valid for all f. Thus for real f, z~x>0, 

(8.12) (rf/<fo)Wf) = ^ x , / ( r ) + * x ( - l)*ft 

and for f=real — ip7r/2q, z~re1,2
t 



1946] WATER WAVES ON SLOPING BEACHES 755 

(8.13) (d/dz)Ut9j(0 - <rA,„(r) + ' x ( - l ) * ^ * - " 2 . 

Next take p^l (mod 4). Set 

(8.40 r , - l o g ( - * , ) , 

where, again, (8.5) is assumed: 

TJ = - piri/2 + jpwi/q, j = 1, • • • , q. 

Then, we have the same relations of conjugations as before, namely 
(8.6) and (8.7). The definition paralleling (8.8) becomes 

(8.80 W f ) - <?** eHHt. 

It introduces a single-valued function of f for a^O, log a real, and 
\ = (2kq/p) — l as above. We conclude the same relations (8.9) and 
(8.10) of conjugation for the new definition (8.80* Furthermore, the 
differential equation corresponding to (8.11) becomes 

(8.110 {d/tyUM - <rA,*(D + ( - */)x+1*\ 

and its special cases corresponding to surface and bottom are again 
the equations (8.12) and (8.13). 

Now consider, no matter what pt the function W\(z) defined by 

(8.14) W*(z) m f ) < ; ,Wr) . 

We gather from (8.12) that on the surface where z—x>0 

i(d/dz)Wx(z) - W*(z) « É <?,("/ - l)ZXi,i(r) + *x(~ l)kqiÈ ch 

and on the bottom where z~re1/2
t r>0, 

i*u*(d/dz)Wx(z) = £ fci/VA^Q") + ' x ( ~ IV^iici. 

Now, s incere,- is real by (6.17), we have on the surface 

R{i(d/dz)Wx(z) - W*(z)} - * £ * , ( » > , - 1 ) W T ) . 
l 

and on the bottom 

R{i^\d/dz)W^z)) - « t t f ' V A , ^ ) . 
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But then the equations (6.6) and (6.8) are sufficient, because of the 
conjugation relations (8.9) and (8.10), to insure 

R < ( i 1J W\(z) > = 0 on the surface, 
(8.15) \\ dz / ) 

R{hli\d/dz)Wi(z)} = 0 on the bottom. 

This shows that RW\(z) is a harmonic function satisfying the bound­
ary conditions on surface and bottom. 

It is of interest that the functions Z,xf<ry(f) are linearly independent 
as functions of z îorj = 1, • • • , q\ this implies their real independence 
or semi-independence (see §5) on the surface as well as on the bottom. 
But since this fact is of no influence on the explicit formulae which 
we shall give for the waves, we suppress a proof thereof. 

9. Construction of a second standing wave for £ = 1. We are now 
in a position to complete the construction of the progressive wave for 
p = 1 by establishing a second standing wave which behaves differ­
ently at infinity from Hanson's standing wave given by (6.19). 

This second standing wave is 

(9.1) RW^(z) = R£ cjL-i.9i(t). 

To show this we study the behavior of W-x(z) for large \z\ in 5/j. 
Notice that a change of the value of the positive lower limit a in 

the definition (8.8') of the integral affects W~i(z) merely by adding a 
real constant times WQ(Z) to it. For simplicity's sake take a = l. We 
have 

with the values (8.5) 

log - <ti = Tf = - iri/2 + jiri/q, j = 1, • • • , g. 

Hence the arguments of — <XjZ lie between —iri/2 +iri/2q and iri/2, 
as z varies in the sector 5/3. Thus the variable of integration may be 
restricted to the half-plane R(t)*zQ. 

With this in mind, let 7 = 7 ! 4-72 ,̂ 71 ̂ 0 , (7! è l . There exists an 
M>0 such that 

1 
yirldt\ ^ M. 
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J> 90 1 

-itrHt = 

= 

17 /• 7 
et-yt-i\ + 1 et 

11 ** 1 

7 - i - ei~7 + r 7 

-yt~2dt 

e^trHt 

757 

and 

I f 7«*-*r*<« ^ e f y I /1-21 dt I ^ e(l - I 7 I"1 + TT/2). 
| J 1 I J 1 

This latter estimate is obtained by making the path of integration 
proceed first on the unit circle and then on a ray through the origin 
and 7. Consequently, (9.2) holds with any M for which 

M è I 7 h1 + e1-* + e(l + TT/2), 

for example, for M — 1 +e(2 +7r/2). 
Hence W-\(z) remains bounded in the sector Sp as long as \z\ à l . 

Moreover, as z~x—»<*>, jL_it<ri(f)—»0 for j = l, • • • , 5 — 1; for from 
(9.3) with —<TjX=yi +y2i we gather 71 > 0 and 

/

»7 
e" 

1 
T 1 ^ 7-l _ el-7 + (ƒ;""-ƒ;,) e'-vtrtdt 

^ I 7 F 1 + el~vi + <rV2(l - 27F1) 

+ | 7 r 1 - 2 7 r 1 | -

The terms of the last expression tend individually to zero as x—» 00. 
On the other hand, consider 

e'-^dt, 

as x—» 00. By a deformation of the path of integration in the left half-
plane we obtain in a familiar way 

/

too p /—» 

én-W = I « r 1 * + vi = f + H 
where the sign ƒ ' denotes the Cauchy principal value of the real in­
tegral. Accordingly, 

W^(x) e'/-1d/ —> 0 as x —» 00 ; 
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this leads to 

W-i(x) — cge^ix(r + ni) —>0 as x —> «>, 

since the integral (9.4) converges. Thus W~i(x)—rWo(x) behaves 
like cqe~ixTÎ as x—>oo, while, by (6.18) and (6.19), Wo(z) behaves like 
cqe~ix. Obviously the nodes of R{cqe~ix} lie midway between those of 
R{cqe-ixiri}. 

Near the origin we find, since J^c,- is real, in view of (6.17), that 

RW-i(z) ~ q112 log | z |. 

10. Asymptotic behavior of exponential integrals. We proceed to 
the study of the asymptotic behavior of the functions Zx, „,(£). For 
simplicity of notation, we set, for p = 3 (mod 4), 

7 = «e/, Hx(y) = & I €T«/\tt 

where now k is supposed not to be divisible by p and 

(10.1) X = (2kq/p) - 1, ft - 1, 2, • • • . 

Furthermore 1 <p<2q, a = 0. Since X>0, integration by parts yields 

J 0 I 0 "̂  0 

ffx(?) = - 7X - X7X"X X(X - 1) • • • (X - s + l h x -

+ X(X - 1) • • • (X - s)et f e-W—idt, 
Jo 

a formula which holds for all integral s with 0<5<X. In particular, 
we shall take the value s = [X], denned as the largest integer less than 
X. We find 

1 

= J2c3'ariz (—1 — X(<r̂ «5" — . . . —X . . . (X — 5+1)(o-,*) *) 

+ X(X - 1) . • • (X - s) £ a**' f ' €T«̂ -* 
» <rjz 

0 

Now 

x 
Z <W = 2 ctf* - ] £ Cifi***l*<rTlf 
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and by (6.14) and (8.5) this becomes 

1 

= d Z «*-i(- O ^ ' C - l)fcg+1 - ƒ ( - * )&(- 1)**+1 - 0, 

for by the lemma of §4 the roots of ƒ(£) are —ie, • • • , — ie*-1. 
Similarly ^iC^""1=/(—ie2) -const. = 0, where the constant de­

notes a number which does not depend on the index j of summation. 
Proceeding in a like manner, we get 

(10.3) X) ci(Ti = ƒ(-" *€ )• const. = 0 
1 

for all 5>0 with s^q-2. This is compatible with 5« [X] = [2kq/p-l] 
for all k with 

(10.4) 1 g fc^ (ƒ> - l)/2. 

In fact, then 

[2*g/#] ^ [(* - D Î / * ] £ [? - Î / # ] £ ? - l, 

[X] - [2*ç/# ~ 1] S î - 2. 

For k satisfying (10.4) we conclude from (10.2) 

Wtiz) - W-.i+ikt/P(z) 

(10 5) * 

= r(2V#)(r(2^ - [2^]))-'I^-w t-wri(f)-
1 

Set 
(10.6) W*k(z) - (r(2*j/#))-Wx(«). 
By (8.15), W* satisfies the boundary conditions on surface and bot­
tom. 

In order to study the behavior of W?(z) for 2 = #—»«> and for 
2 = r€1/2, r—»oo, consider one of the integrals on the right of (10.5) 
(it will suffice to consider only the first of the following alternatives 
in case p<q): 

ƒ» crjx p crjrtll* 

f-tfi-M-lfó r e S p # fittl* I jr-tfir-M-lfa 
0 v 0 

Suppose first that j is such that 

(10.7) x/2 ^ - ir/ è - T/2 resp. TT/2 à - irj - />TT/2C à - x/2. 

Then 
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lim 
#--+00 %J 0 

resp. 
/rel/2 

im f ' «r^-M-1*» = r(X - [X]) 
-•oo * / o 

ƒ» «r/rci/z 

O 

whence 

O J*,':* 

resp. 

ƒ» <r ƒ rel/2 

o 

= r(x - [x])^rel/2 - ^'«1/2 f r-^-w-1*. 
v <rir«l/2 

/

i 0 0 i l r ° ° 
= 1 e~u\u + <Tjx\x~l 

<rjx\ 1 ^ 0 

^ | <r,-« | x - W - 1 I e-udu -> O, 

«r/r «1/2 

Here 

- w - 1 ^ 

resp. 

f00 I 
e<r/rel/2 I l > Q > 

J <r/r«l/2 I 

since X - [X] - 1 < 0 . Thus 

a» er,-» \ 

e_, / X-[x]- ï^ _ r ( X _ [x]) \ _> 0 ) r e s p > 

O / S-00 

(10.8) a» 07 rel/2 \ 

« r ^ - M - 1 - r(X - [X]) ) -» O, 
if (10.7) holds. 

Observe that fSerty-M-ldt is multiplied by e2ira as log 7 is increased 
by 2iri. Therefore we can generalize the previous result. Suppose tij 
defined equal to ny provided there exists an integral number n such 
that 
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either n2ir + w/2 j£ — irt à n2ir — ir/2 
(10.9) ' ' 

or w27T + 7r/2 à — *V/ — pw/(2q) ^ w27r — x/2. 

(Notice that p<2q so that these two conditions never lead to differ­
ent values of #,-.) Then 

lim <e°>x( I e-^-W-Ht - **W*i*TÇk - M ) ) f = Oresp. 

(10.10) 

lim < efi'^l I r - ^ - M - y / - e**^*«^r(X - [A]) )> = 0. 

On the other hand, if one or both of the conditions (10.9) cannot be 
satisfied with integral n, but instead we have with some n 

n2ir + T/2 < — ÎTj < n2w + 3w/2 resp. 
(10.11) 

n2ir + TT/2 < - ir,- - pw/2q < n2ir + 3?r/2, 

then we must have, for example, 

I p a i x I I f —ojx I 1 /* °° I I C °° I 

•J 0 I I •* 0 I I •/ 0 I I ^ —<r; .d 
g | a | x - [ M - l + | ^ / . | r ( X - [X]); 

hence 

ƒ» cr/a; 

er'fi-M-W = 0, resp. 
o 

(10.11.1) 

0 

These estimates show that 

(10.12) 

lim fwt(x) - I > ^ e * > 4 = 0, 

lim JTftC^1/2) - £ €&*"*»[ = 0, 

where ö3k stands for 

r^rinjkqlp if (10.9) holds, 
( 1 ° - 1 3 ) ' * - | o if (10.11) holds 

(the value of n2- in the second case is immaterial for the validity of 
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(10.12) because of the vanishing of the exponential factor). The pos­
sible values of tij in (10.9) are 

(10.14) m - (p + l ) /4 ; (p - 3)/4, . . . , 0, - 1, - • • , - (* - 3)/4. 

The first of these occurs only for j ^ g , that is, wfl = ( £ + l ) / 4 . All 
the other possible values of n, must be successive integers since two 
successive terms —ir,—£7r/2g, —iryor — ir,-, — iTj+i—pTr/2q differ by 
pw/2q<ir. On the other hand, the smallest value of w,- occurs either 
in w/27r—TT/2g —iTjSnj2w +n/2 or in w,-2x—7r/2g — ir,— pir/2q 
SIÎJ2T +w/2 when this w,- is the smallest integer following that one, »', 
which would occur if j could become equal to zero; this would give 

2n'w + T/2 = - p<ir/2, n' = - (# + l ) /4 . 

The alternative in the relations (10.9) to (10.14) is dictated by the 
possibility that p>q. Had we demanded that p<q, then the Phrag-
mén-Lindelöf principle would have permitted us to fix our attention 
solely on the surface, as was explained in §2. 

Next we give the parallel developments for p ss 1 (mod 4). Integrate 
by parts for X > 0 : 

ƒi - 7 l—y / » ~ 7 

eHHt = eltA - X tH^Ht = 
0 I 0 • / 0 

•J 0 

0 

—y 

eHHt - ( - 7)x ~ X(- T ) ^ 1 + • • • 

+ ( - 1)'(- 7)X-X(X - 1) • • • (X - * + 1) 

+ ( - l)H-ieT f \v-*-*dt\(\ - 1) • • • (X - 5), 
Jo 

where 5= [X]. Then, by (8.8'), 

•*[• 
(10.2') 

+ X • • • (X - s + 1)(<T,Z)-) 

+ Cj(- !)•+V" f ' e'P—WX • • • (X - 5)1. 

Now 
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l l i 

= const. E ö/-i(~" fc)'"1 = const, ƒ(— ie) = 0, 

È ^ ( - * / ) x ~ ' = const. È « f - i ( - ^ V H ) ( « + « 
l l 

= const, ƒ ( - *V+1) « 0, 

since (10.3) and (10.4) apply again. Hence, for fe = l, 2, • • -, (£ —1)/2, 
X « ( 2 * a / / 0 - l , 

WVC*) « (r(x + i)rwx(z) 
(10.60 q 

. (_ l)nN/ri(r(x - [x]))-» E </tv-w-i.«(r) 

satisfies the boundary conditions on surface and bottom. 
For large x, resp. large r, consider 

ety-M-idt resp. ^ r d / l I eH^^-Ht. 
o v o 

For such j as make 

- TT/2 < - ir,- < TT/2 resp. - ir/2 < - fr/ - />7r/2g < TT/2, 

we have 2? (—07) > 0, and, with 7 = — o* ,̂ 

(10.11.10 *"•* r % ^ - W - i j / « f ^ e ^ ^ - W - i ^ - ^ o , 
•/ 0 J 0 

as#-*<» ;orresp. (10.11.1') holds with7 = ~(r,r€1/2and JR(—(r3€1/2)>0 
as r—>oo, Similarly, (10.11.10 still holds if there is an integral n for 
which 

— 7r/2 + 2mr < — fry < TT/2 + 2nw resp. 
(10.110 , , , 

- T / 2 + 2WTT < - ir/ ~ />7r/2g < TT/2 + 2nr. 

On the other hand, if there is an integral n such that 

TT/2 + 2nw 2g — in S ST/2 + 2tnc resp. 
(10.90 , , , 

T/2 + 2riT ^ - try ~ pT/2q <i 3TT/2 + 2wr, 

then let »/ be defined by tij — n in (10.90- We have RySO, where 

7 = — <TjX resp. 7 = — <r,re1/2, 
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<n f \*p-N-idt = e~y( f + f J, 

ƒ! —00 ƒ • «0 

ett\-[\\-ldt = __ I -̂1*1 | ^ |X-[X]-1J | t | ^(l+2n/)(X-[X]-l) 

o J o 
= e(2ny+l)Tt2&3/p(_ l)[2A;g/p]p(X — [ \ ] ) , 

i r 7 i i cy 

1 •/ ~oo 1 1 */ -00 

1 f ° 
= 1 ew(w + 7) x -W-i j w 

1 * ^ - 0 0 
^ | 7 | x - r x ] - i ^ 0 > 

as #—> oo resp. r—> oo. 

Hence 

lim e*** 1 eV-W-irf/ 

(ïo.ioo 
— (— i)[2fcö/2>]p(x — [x])e<r>V2n'"fl),ri2^/:P = 0, 

resp. a similar limit equation for r—» oo, if #ÖT/ is replaced by rcr2€
1/2. 

Accordingly, by (10.60 

(10.120 

were now 

lim <W?(x) - ^cfijhtfiA = 0, resp. 
»-*oo I x ; 

lim j j ^ W 2 ) - Z < /̂*e"ré*} = 0, 

^ reMkq(tnt+i)ip if (10.110 holds, 

lo otherwise. 

Here the possible values of Uj range from (ƒ> —1)/4, occurring for j =g 
when —(T3 = i, Tq — pir/2, to — (ƒ> —1)/4, occurring for the smallest j 
for which (10.90 holds. For this value exceeds by 1 the value 
— (£ +3) /4 which would occur if j = 0 were admissible; for then 

3TT/2 + 2wV = - pr/2, n' = - (p + 3)TT/4. 

11. Extension to the case X= —1, p^3 (mod 4). If k in (8.2) is 
set equal to zero, a can no longer be chosen as zero if the integral 
(8.1) is to converge. We set a = 1 and study the asymptotic behavior 



i94Ól WATER WAVES ON SLOPING BEACHES 765 

of £-i.,y(?) defined by 

(* ffiz 

<rlrHt, for p s 3 (mod 4), 

(11.1) £- ! .„({•) -

^ for £ s= 1 (mod 4). 

Here again the generalities about the multivalued character of the 
integral apply. If f increases by 27ri, Z,_i(<ry(f) changes in the following 
manner: 

(11.2) £-i.ri(f + 2*0 - £-,,„(*•) + 2 T * V " . 

Furthermore, there exists the conjugation 

(n.3) z ^ / f l s J ^ f f ) , 
where $ƒ=£ƒ. Let7?^0, — 7 r /2^a rg7^7 r /2 , log7 = log |*y| - f i a r g 7 . 
Then 

•ƒ>"-"" -«*( ƒ,"-ƒ,") 

l J 1 I 

(11.5) e* f e-H-Ht- e** \ e-H^dt-tO 

as7—»oo, | a r g 7 | :gir/2. Butif7r/2 + ô < a r g 7 < 3 7 r / 2 —5, Ô>0,consider 
crf\e~H~ldt where the integral is extended along a path leading in the 
upper half-plane from 1 to -y/| -y| and thence to 7 on a straight line. 
We have, with K = 7 / | 7 | = — *i -H*K2, Ki>sin ô>0 , 

J J 1 J I J x I I Jit 

•/« I I J ! I 

/

• l7 l /2 | I /»l7l 

+ J 

r̂1^ 

I Y I / 2 

^ ^«lri/2 log ( I Y J /2) + 2(id I r I )~1. 

Hence evfye-'t-ldt-*Q as 7r/2 + 5 ^ arg 7 £ 3ir/2 - ô and 171 ~* °°. Con-
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sequently, for rij as defined by (10.9) and f « log x real resp. f = log- r 
—ipw/2q, log r real, 

(11.6) £-i,,i(f) ~ Ivin&i* - e*>* f <r'1rldt-*Q, if £07 £ 0, 

rèsp. 

(11.7) £-i,,,(f) ~ 2witije°i"112 - e""1* f <r*r ̂ - » 0, 

if J R ^ 1 ' 2 ) ^ 0, 

while always 

(11.8) lim Z_i,,,(r) = 0, if R<Ti < 0, f - log *, 

resp. 

(11.9) lim £_i„,(f) = 0, if RW*) < 0, f - log (r*1/*). 
£—»oo 

The formulae (11.6) and (11.7) lead to corresponding relations for 

(11.10) W-iif) m £ cl-n.,0;). 

12. Extension to the case X==—1, /> = 1 (mod 4). Let R—<Tj>0. 
Then with some integral n and 7 = ~-(TJX> Ry>0, 

erv I eH~ldt = 2irin<ry + I e%"yrxdt, J y f* y 

eH~ldt = 2irin<ry + I e* 
where the last integral can be taken along a straight line and 

»7/l7l I I /• 7 I 
I earwig | | + I 

I •/ 1 I I •/ 1 I I J y 

/

icy 

el1rldt. 

7 / l 7 | l 

>Ry 

S #~Ry - const. + er 

Consequently, if y tends to « on a ray through the origin which lies 
in Ry>0, we have e"yJleH~ldt-^Q. Now suppose wy defined by (10.9'), 
that is, 

TT/2 + Iftfir S - T,i g 3TT/2 + 2w^ 

resp. 

T / 2 + 2nJw ^ — T,i — ptri/lq :§ 37r/2 + 2nfir. 
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We have in the first alternative 

etr
ldt = *** I el1rldt + e*>'x I e'irW, 

where 

ƒ —00 / • f—» 

eH-idt = I e%trxdt + (2^- + 1)TT^ 
with ƒ' understood as Cauchy's principal value, and where the path 
of JzT remains in the negative half-plane. Now as x-+ <», 

eft* I e'lrHt = I e^^trHt 

) 
e\t - <Tjx)~ldt -1 ^ ar1 -> 0, 

so that 

(12.1) e»i» f f ' V r 1 * - (2»/ + 1)« - f e r w l -> 0, 

for a —• 00, jR!<r,- ^ 0. 

For the second alternative of (10.9') we have similarly 

e H / - (2»/ + 1)« - I e « -> 0, 

for r -> 00, JRo-ye1'* ̂  0. 

13. Construction of the finite standing wave. It is now possible to 
exhibit a solution of our boundary problem in the form 

( P - D / 2 

(13.1) O o W - I T o W - Z AkWk*{z); 
*- i 

QoOs) remains bounded as z tends to infinity on the surface and bottom 
of 5/3, and remains bounded as s-*0. Moreover, the derivative 
dtto(z)/dz will also remain bounded near 2 = 0 as is obvious from the 
definition (6.19) of Wo(z) and the definitions (10.6) resp. (10.6') and 
(10.2) resp. (10.2'). Our problem is to determine the Ah in such a 
way as to eliminate by superposition the various infinities introduced 
for large \z\ by each of the summands in (13.1). It suffices if this can 



768 HANS LEWY [September 

be done on the surface for p<q, and on the surface and bottom for 
q<p<2q. Let p s*3 (mod 4). Fix the attention first on the surface. 
The estimates (10.10) and (10.12) lead to the equation 

t / (p-D/2 \ - | 

Oo(*) - Z ' cf** 11 - Z àikAk) « 0, 
i \ fc-i / J 

where it is necessary to extend the sum 2 ' on^Y o v e r those values j 
for which the first alternative of (10.9) applies. Now suppose that for 
those values of tij for which the first alternative (10.9) applies, but 
with the exception ofj = q> we can solve the system of linear equations 

( P - D / 2 

(13.3) £ iikA* = i» i ^ ? > 

in the unknowns Ak. Then (13.2) reduces to 
p / (p-D/2 \ - l 

(13.4) lim Oo(*) - c^'ll - £ ÔqkAk) « 0. 

In order that Öo(#) should behave like a simple wave at infinity, we 
shall have to show in addition that 

(P-D/2 

(13.5) - 1 + E W * ? * 0 . 

It follows directly that Qo(#) stays bounded also on the bottom if the 
Ak satisfy the system of equations (13.3). 

Now (10.14) shows that (13.3) represents exactly (ƒ> —1)/2 distinct 
equations, namely 

(P-D/2 

(13.6) E Ake**ikn«<*> - 1, » « - (p - 3)/4, • • • , + (P - 3)/4. 

A similar analysis in the case p s 1 (mod 4) shows the correspond­
ing equations to be 

(P-D/2 

(13.60 H Ake
2*ik«un+1)i* - 1, 

» - - ( # - DA • • - , ( # - 5)/4. 

We proceed to give the values of the A * explicitly. There occurs in 
this deduction a remarkable analogy to the computation of the coeffi­
cients dj of the polynomial ƒ(£) introduced in §4, with the role of p 
and q interchanged. Consider the polynomial of degree (p — l)/2, 
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F(& - E 4*£*> with A0 - - 1, 
o 

which vanishes at the (p — l)/2 distinct points 

(13.7) £ « e**inqipf 

* « _ ( j - 3)/4, • • - , ( # - 3)/4, for f • 3, 

resp. 

(13.70 £ = e2*^2»*1)/*, 

» = - ( £ - l ) /4 , • • • , ( / > - 5)/4, for £ s 1 (mod 4). 

We have 

W& = I I (£ - *?n)> ^ = e4**'*, for ƒ> s 3 (mod 4), 

(13.8) M * ( p - 3 ) / 4 

F(0 « - I I tt - >?2n+1), *? - * W p > for p s 1 (mod 4). 
n£-(p- l ) /4 

Evidently (13.6) resp. (13.60 hold. To test (13.5) we write for 
£ s 3 (mod 4) 

( P - D / 2 
(13.9) - 1 + X W * = JF(^(P+i)/<4*>)) = /̂ <p+i>«*</j>) ^ o 

&«i 

since e(2,+1)î,r*/3, coincides with none of the roots (13.7). Similarly for 
£ s l (mod 4) 

( P - D / 2 

(13.90 i 

= F(e(p+1)q*i/p) 

which does not vanish for a similar reason. It is easy to evaluate the 
Ah explicitly. We have for £ = 3 (mod 4) 

whence 

(p-D/2 (p-D/2 

E ^ * + 1 0 ? * - v<*-»i*) » X 4̂*€*(ii* - l)t?(*~3)/4. 
o o 

But 

VPI2 „ l f ^p/4 » ( _ !)« 

and 



770 HANS LEWY [September 

A^i - ( - l)M»(u*-«/« - TT+'Vin*-1 ~ T1/2) 

so that 

4* = ( - ï)«Ak-i(sm (2k - l)qr/p)/sia 2kqv/p 

(13.10) » sin (2»»- l W f 

y»i sm 2vqr/p 

Similarly for £ = 1 (mod 4) 

ft - v(v~1)f2)F(v2!;) - i?^ft - T ^ 1 " 2 ) / ^ ) , 

L ^ + v * - v»"1) - Z ^ w ^ ' v * - *?(*-i)/2). 
But here 

^P = 1, VP/2 = ( - 1),, Ah - ( - l ^ jb -nT^V*- 1 ~ l)/0?2fc ~ I)-

-4* = ( - l)^fc-i(sin (2k - l)q>ir/p)/sm 2kqw/p, 

which again leads to the result (13.10). 
We find jointly for p s 3 and pz&l (mod 4) from (13.8) 

(— iyp+l)/2]?(e*iq<.P+l)lp) =- (e*iq(p+l)lp _ eHq(p-Z)/p^ 

and by elementary simplification 
(p-l)/2 

( _ l)(p+l)/2/7(eiri«(p+l)/p) -- eriq(p2-l)K4p) J J ^jriqklp __ e-2viqklp^ 

1 

and by a reasoning similar to that employed in §4, 
( 1 3 . 1 1 ) ( — l)CP+l)/2/T(e^s(p+l)/p) s eriq(p2-l)t*Pi(p-l)l2(— l)N(2q,p)pU2t 

Here iV(2$, £) represents again the number of terms in the set 
e2*iq/Pt e4*iq/pf . . . 9 eri(p-i)q/p w i 1 0 s e imaginary part is negative. Ac­
cordingly, by (13.4) and (13.9) resp. (13.9'), 

(13.12) lim [0o(«) + cfl€T'*F(«<»+"«*«/»)] = 0, 

or 

(13.13) 0 = lim [Oo(«) + ^ 'V**»*-» ' 4 » 
a;—*oo 

. i ( l> - l ) /2 ( - . j[)iV(2«z,î))4-(p+l)/2^1/2]# 

14. Construction of a second standing wave for p as 3 (mod 4). Sec­
ond interpolating function Gft). Consider the polynomial 

(p-D/2 

(14.1) Gft) - S B& 
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where 

(14 2) Bk = " i{Ak/2)bk ~ ^ / f o * + """* " 2 ) 

= - (Ak/2) cot 2irgV# 

is real. We have 

5* « - *W2)((1 - ^ ) - i - (1 - ^*)-i) f 

(
(P-D/2 \ 

E *M*(1+ *,*)) 
«(f/2)(F(Ö+*(&) + 2 ) , 

since Ao — — 1. Also 
( P - D / 2 

G(l) = E 5*f 
i 

whence, by (13.8) and (14.3), 
(P-D/2 

(14.4) GOT) = t* + E **> for » = - (# - 3)/4, • • • , ( # - 3)/4, 
l 

and 

(14.5) G(r7<^)/4) = i( j + l)/4 + {i/2)FW*+l)l4) + E £*• 

Thus the 5* are real numbers for which, with 5,*. from (10.13), 

(14.6) E 5*8,* = im + E Bkl if (10.9) with j * (7, 

and 

E J5*«a* - i(p + l)/4 + (t/2)F(i|<H-i>/4) + E **. 

Set 
(P-D/2 

TÏL.I(«) B ïT-i(«) ~ 2x E W?(z)Bh 

(14.7) * 

+ TF0(*) (2TTE Bh - ƒ e'r^/Y 

By (14.7), (14.6), (11.6), (11.10) we have the limit relation 
r (P -D/2 

lim - TÎLI(») + 2ri E ' c^e*'* - 2TT E ' E BkdjkCje^x 
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where the sum Z ' extends over all j with (10.9). This immediately 
yields 

(14.8) lim [ - »a.i(*) - «^fo***»'4)*-*'] = 0. 

Compare (14.8) with the limit formula (13.12) for B0(tf). Clearly the 
nodes of fi_i(#) lie asymptotically midway between those of £lo(x). 
In a similar manner it is seen that fi_i(s)—>0 on the bottom of Sp. 

For z—»0, 0_i(s) has a logarithmic singularity while 0o(s) remains 
finite. Furthermore, Q-i^) satisfies the differential equations on sur­
face and bottom since it is a linear combination with real coefficients 
of functions having this property. Thus Rti-i(z) is the velocity po­
tential of a second standing wave and 

cos tRQ0(z) — sin tRÛ^z) 

is the time-depending velocity potential of a progressive wave, ad­
vancing toward the shore z = 0, which at large distances from shore 
is a simple progressive wave of wave length 27T. We observe that it 
has a logarithmic singularity at z = 0. 

15. Same for p^l (mod 4). Set, as before 
(p-D/2 

i 

with 

Bk = - (*/2M»((i - i'*)-1 - (l - r2*)-1) 

= - (At/2) cot (2rkq/p), 

where now 

We find 

(IS. 1) G(tf) - G(Ö - (i/2)(F(0 + Ffo*) + 2), 

since A o= —1. Also 

(15.2) Gin***1) = G(„) + in, n= - (p - l)/4, • • • , + (ƒ>- 5)/4, 

(15.3) G(n<^»'«) = G(ij) + i(p - l)/4 + («/2)F(i,<*•»/«). 

Now, by (15.1), 

G(v) - GOr1) = «\ 

since F(ij) — F{rfl) = 0. Hence, because Bk is real, 



1946] WATER WAVES ON SLOPING BEACHES 773 

G(v) = i/2 + real. 

Thus (15.2), (15.3) become 

GO?**1) = i(n + 1/2) + RG(V), 

» = - ( # - l)/4, • • • , ( # - 5)/4, 
G ^(P+I) / 2 ) = ^ + !)/4 + {i/2)F(n{p+l)l2) + RG(v). 

Accordingly 

X 5**,* - i(m + 1/2) + 2?G(T?), 

if (10.9') holds with jV^ , 

Z -B*8tt» = i(p + l)/4 + (i/2)FW*+l)l2) + «7(i?). 

Set 

+ Wo(z) (2TRG(V) - f e-'rwY 

Then 

0 - lim | - T I U ( « ) + 27rf £ ' **(2»/ + 1)«"* - 2 ^ ^ <?**"»]£ Bkbjk 

+ (2TRG(V) - f e*rldl\^ c^'\ 

Consequently 

0 = lim [ - xlL.i(*) - ricJPie****1™*)*-**]. 

The same conclusions about the behavior of 0_i(2) on the bottom and 
near 0 = 0, and about the asymptotic distribution of the nodes of 
Riïo(x) and i?Q_i(#), hold as did for p H 3 (mod 4). Again 

cos tRtlo(z) — sin tRQ-i(z) 

is the velocity potential of a progressive wave advancing toward 
shore which at large distance from shore becomes a simple wave of 
length 27T and which has a logarithmic singularity at the shore. 

16. About the continuity of the standing wave as function of the 
angle pir/2q and the connection with the quadratic reciprocity law of 
number theory. Let us inspect the asymptotic location of the surface 
nodes of the finite standing wave QoOs) as z—x—»<*>. On entering the 
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value of cq from (6.18) in (13.13) we find that 0o(#) differs infinitely 
little from 

( _ i ) (« -D/2+(p~l ) /2 (_ l-)N(2qlp)eTi(pi-l)ql4pe-ixpl/2i if £ Odd, 

( _ iyp-D/2ie-vi(p+q)/A+iri(p2-l)q/4p(_ lyjN(2q,p)e-ixpH2^ Jf q e v e n # 

Thus the nodes of Rtio(x) come to lie asymptotically at the points 
x=7r/2 +ra7T -\-qpir/4:--qTr/4:p—ir(q -f£ — 2)/4, with m integral for q 
odd, x~tnw+qp7r/4: — qir/4:p—Tr(l+q)/4, with m integral for q even. 
If the oddness of p is utilized, it is seen that the nodes lie asymptoti­
cally a t 

(16.1) x = tnw — 7r/4 — qir/4:p, 

no matter whether g is odd or even; for if q is odd, 

QP ~~ q — p s* — 1 (mod 4), 

and if § is even 

Çjp — 1 — g ^ — 1 (mod 4). 

The result (16.1) is the generalization of a property announced at the 
end of §7 for the case p = 1. 

Next let us study the ratio of lim*^00(e
ia;Qo(^)) and fio(O). By (13.1), 

(10.6) 

Oo(0) - Wo(0) « £ ch 
l 

as given by (6.17). Accordingly, by elementary simplification of the 
exponents, one obtains, for example, for odd p and q the formula 

lim (e<*Ûo(*))/Û0(0) 

= ( — ly)N(2q,p)+N(p,q)+(qp~p~q+l)l4eTia-qlp)U(p/qyi2, 

Now suppose that the left-hand side depends continuously on the 
angle pir/2q between surface and bottom. Then the same applies to 
the right-hand side, whence in particular the expression 

( _ l\N(2q,p)+N(p,q)+(qp-p-q+l)/i 

must be continuous in p/q for p and q odd. But since it equals ± 1 , 
this expression must have a constant value, which is determined as 
+ 1 by taking p = q*=tl or £ = 1, g = 3. Furthermore it is easily seen 

from the definition of N(p, q) that, for odd p and q, N(p, q) — N(2p, q). 
Thus the assumption of a continuous dependence of the finite stand-
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ing wave on p/q implies 
( _ i)N(2qtp)+N(2ptq) -. ( _ J) (p-1)(<r-l)/4# 

This is, of course, the quadratic reciprocity law of number theory. 
We shall not investigate here the above continuity question, nor 

shall we go here into a discussion of those problems which are im­
mediately suggested by the above embedding of a number theoretical 
fact concerning two integers p and q into a continuous law concerning 
the quantity p/q. 
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