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1. Introduction. In this paper we prove the following four limit 
theorems: 

Let Xi, X2, X$, • • • be independent identically distributed random1 

variables each having mean 0 and standard deviation 1. Let 

Sk = Xi + X2 + • • • + Xk, 

then: 
I. 

lim prob. {max ($i, s2, • • * » sn) < an112} = a\(d) 
n-+oo 

where 

(Ti(a) = 0 ( a g O ) 

and 

lim prob. {max ( | $11, | s21, • • • , | sn | ) < an112} « <r2(a) 

II. 

n->» 

where 

(T 2(oj) = 
7T m«,q 2W + 1 

exp { - (2m + l)27r2/8a2} (a à 0). 
7T m~q im f 1 

III. 

2 . 2 . . 2 

lim prob. < < a> = o^O*), 
*»->» I n 2 ; 

where 
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1 This condition can be replaced by a weaker one. In fact, it is enough to assume 
that the X's are such that the central limit theorem is applicable. 
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„ ( a ) » I du UT*» I (cos 0" x / Vi ' f — i *-*'*" Id» (a ^ 0) 

a n d 

' i . «iC«, g) - 2X) ( - l)y*«+« , /« sin {In + l)«f (9/ - — i 

IV. 

.. f l ^ | +1^»1 H h l J , l 1 , , 
lun prob. < — < a> = <r4(«), 
n-« I w8/2 J 

wAere /Ae rea/ Laplace transform of 0*4(0:) is given by the formula 

ƒ 
J 0 

trBada^a) « X) «i e x P ( - M2 /8) (* > 0)t 

and wAere 5/ is the jth positive root of the derivative of 

P(y) - - ^ j ^ {Jl<*(^T ym) + J - V , ( T
 y"2)} 

and 

1 + 3foP(y)dy 
«/ 35;i>(5,) 

The proofs of all these theorems follow the same pattern. It is first 
proved that the limiting distribution exists and is independent of the 
distribution of the X'$; then the distribution of the X's is chosen con­
veniently so that the limiting distribution can be calculated explicitly. 

This simple principle has, to the best of our knowledge, never been 
used before except in a paper by one of the authors in which IV is 
proved in all detail.2 

Theorems I and II generalize and simplify several results of Ba­
chelier.3 Bachelier's work in spite of being both inspired and impor-

2 M. Kac, On the average of a certain Wiener functional and a related limit theorem in 
calculus of probability, to appear in Trans. Amer. Math. Soc. vol. 59 (1946). 

8 L. Bachelier, Les lois des grands nombres du calcul de probabilités, Paris, Gauthier-
Villars, 1937. See in particular §§18, 21, 22, 35. This book contains no proofs but it 
gives references to earlier papers. For the modern and rigorous approach to these 
questions, based on the differential equation of diffusion, see the third and fourth 
chapters of A. Khintchine's book Asymptotische Gesetze der Wahrscheinlichkeits-
rechnung, Berlin, Springer, 1933. Our proofs, however, are entirely elementary and 
do not depend on the use of parabolic differential equations. 
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t an t does not always satisfy the modern requirements of rigor. His 
methods often depend on replacing difference equations by differen­
tial equations, a step not always easy to justify. 

The limiting distribution of III was discovered by Cameron and 
Martin in their work on Wiener space.4 Their result is equivalent 
to the conclusion of III if the X's are assumed to be normally 
distributed. We use here a different method and make our considera­
tions independent of the use of Wiener space. The Laplace transform 
of 0*4(0:) has been recently calculated by Kac.6 There seems to be very 
little hope that a reasonably simple expression for <r\{a) itself can be 
found. 

2. Proofs of I and II. Let &, G2, G8, • • * be independent, normally 
distributed random variables each having mean and standard devia­
tion 1 and let 

Rk = Gi + G2 + • • • + G&. 

Let furthermore € > 0 and 

!>»(«) = prob. {max (si, s2, • • • , sn) < an1'2}. 

We first prove that for every integer k we have 

prob. {max (Rh • • • , £ * ) < ( « - €)ix 'a} £ lim inf Pn(a) 
€2k n->o» 

(1) 

g lim supP„(a) ^ prob. {max (Rh • • • , £ * ) < ak1/2\. 

Let 

"'"[' 'I"] ( i - 0 , 1 , 2, • - . , * ) , 
and 

Rn,k(<x) = P r ° h . { m a x (SnV Sn2, • • • , Snjs) < afl1/2} . 

I t follows immediately from the multidimensional central limit theo­
rem that 

(2) lim Pn,k(<x) - prob. {max (Rh • • - , £ * ) < ak1'2}. 

4 R. H. Cameron and W. T. Martin, The Wiener measure of Hubert neighborhoods 
in the space of real continuous functions, Journal of Mathematics and Physics vol. 23 
(1944) pp. 195-209. 

6 Loc. cit. footnote 2. It should be mentioned that the actual computation of the 
Laplace transform of 0-4(a) forms the major part of the proof of IV. 
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Let 

Er « prob. \$r à an1!*, sx < an112, • • , sr~i < an1/2}. 

We see immediately that 

E ^ = l ~P*(a) S 1. 
r « - l 

For tii<rgw»+i we write 

J£ r=prob. {sr^anll2,Si<an112, • • • , j M < a » l , î , | $ni+l--*r| ^en1'2} 

+prob. {^aow1 '2, s^cm 1 ' 2 , • • • , sr-i<an^2, \ sni+lsr\ Ken1*2}. 

The first of these probabilities is obviously equal to Er prob. {\sni+1 

—sr\ ^enl/2} and hence by Tchebychefs inequality it is less than 

Er/ke2. 

Thus 

1 - Pn(a) è —~ + E S Prob. {sr à o» l / f . si < an"2, 

• • • , Sr-i < an1'2, | s„i+l - sr\ < en112}. 

The double sum is obviously less than the probability that at least one 
of the sums snl, snv • • • , snje is greater than (a — €)nl/2. Hence 

1 - Pn(a) < —- + 1 - PHik(a - «), 
&€ 2 

and since Pn(a) <Pntk(<x) we obtain. 

PnA<* ~ «0 ~ l/*€2 < P.(a) < P»,*(a). 

Letting w—>oo and using (2) we obtain (1). Let us now consider the 
particular case in which 

(3) prob. {Xj - 1} = prob. {X, = - l} » 1/2. 

For these random variables the problem becomes the classical prob­
lem of the "ruin of the player" and it is well known6 that I holds. 
Thus applying (1) to this particular case we get 

prob. {max CRlf . . . , * * ) < ( « - e)*1'2} - l/e2k 

S <ri(a) S prob. {max (Rh • • • , Rh) < <xk1'2). 

6 See for instance R. v. Mises, Wahrscheinlichkeitsrechnung, Leipzig and Vienna, 
F. Deuticke, 193L In particular pp. 499-506. 
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Replacing a by a + e we obtain 

prob. {max (Rh • • • , Rk) < afe1'2} g <n(a + e) + l/e2k 

and hence, using (1), for the general case 

<n(a - «) - V«2à ^ lim inf Pn(a) £ lim sup Pn(a) g <n(a + c) + l/c2fe. 
g—too »-»eo 

We complete the proof of I by letting k—> <*> (while keeping € fixed) 
and by noting that <Ti(a) is continuous. 

The proof of II proceeds in exactly the same manner. The only 
difference comes in calculating 

lim prob. {max ( | Si |, • • • , \sn\) < an112} 

for the special random variables (3). The fact that in this case one 
is led to <T2(a) is again implied by the classical theory.7 

We should like to call the reader's attention to the fact that (4) 
provides a convenient and strong estimate for Ph(a) in the case where 
the X's are normally distributed. A similar estimate can be obtained 
by writing out in detail the proof of II. 

3. Proofs of III and IV. Let tii, n^ • • • , w* have the same meaning 
as in §2. Consider the difference 

1 n 2 1 k 2 
Dn = — ]C *r ~ — ]C (*< — **t-i)sn<. 

We have 

n2
 r~i n2 <„! 

tl* ,'.1 r-ni-x+l 

Using Schwartz's inequality we obtain for m-x <r^ni 

m.e. { | s*ni ~ sl\ } Û (m.e. {(snt - s,)2}y'2(m.e. {(sni + s,)2})1'2 

- (»< - ry2(3r + w01/2 < 2nV\m - r)1 '2. 

Thus 

m.e. \ £ | *„ - sr | \ £ 2n^2 £ j " 2 < In"2 ( — + 1 ) 
lr «.«{-,+1 / / - l \ * / 

and therefore 

7 Loc. cit. footnote 6, p. 561. This case corresponds to the problem of random walk 
in the presence of two absorbing barriers. 



1946] LIMIT THEOREMS OF THE THEORY OF PROBABILITY 297 

m.e. {\Dn\ } <C/V'\ 

where C is a certain constant. 
This estimate of m.e. {|Z>W| } implies immediately that for €>0, 

prob. { |DW | £ *} £C/*kll\ 

We now write 

prob. <— ] £ sr < a> « prob. <— J2 sr < a, \ Dn\ }£ e> 
\n2 i ) U 2 i J 

+ prob. j — X) s) < a, | Dn\ < e\ 

and notice that 

prob. { — E $ r 2 < « , \Dn\ < e l 
U 2 i ; 

^ prob. <— X) (̂ » - "*-iK, < « + €>. 

prob. |— £ ** < a j 

- + prob. <— 2 (w< - ^ , - iK, < « + €>. 2 lw2 i J 

Thus 

£ — 

In exactly the same manner we obtain 

(6) V ' ' 
C I 1 • > ) 

^ + p r o b - y ? î f < 7 
Combining (5) and (6) we can write 

prob- v r(M< " w < - l K '< " ~ 7 ~ ^ 
(7) g prob. {— Ê * < «1 

^ prob. <— ] £ (»< - M<_i)5n< < a + «> + -
l» ! l ) « 

C 
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(8) 

Let us now find the limit, as n—* oo, of 

1 i (I 2 } 
prob. <— X) (fii - tii-.i)sni <p> 

Denote by #(£) the characteristic function of the distribution func­
tion of Xj. 

The characteristic function of the joint distribution of 

1/2 , . 1 /2 1/2 

ni (n2 — ni) (tik — nk-i) 
n n n 

that is, the mathematical expectation of 

exp <— 2 fi(^y - n^i)lf2snA 

is easily found to be 

(10) ~ 
h / 1 * \ 

J | ^ - n , ^ ( _ 52 Uni - »«-i)1/a ) • 
J L . 1 \W «_ƒ / 

If we let w-~>oo (keeping & fixed) we find easily that (10) approaches 
(uniformly in every bounded region of the fe-dimensional space) 

•*{-££(§••)} 
which can be recognized as the characteristic function of the joint 
distribution of 

(11) Ri/h R*/k, • • • , Rk/k. 

(We recall that i?, = G i+ • • • +G,-9 where Gu G2, • • • , Gk are inde­
pendent, normally distributed random variables each having mean 0 
and standard deviation 1). 

From the multidimensional continuity theorem for Fourier-Radon 
transforms, it follows that the joint distribution of the random vari­
ables (9) approaches the joint distribution of the random variables 
(11). Thus the probability (8) approaches 

(12) prob. \^ZR)<P\ -P*(0. 

If in (7) we let w—» oo we obtain the inequality 
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C ( 1 n 2 \ 
pk(a — c) — <5 Km inf prob. <— ^ sr < <x> 

tk112 »~>oo \n2 i ) 
( 1 n ^ 

S l im s u p p r o b . < — ]T) s r < a > 
n-»oo VW2 i J 

c 

which is analogous to the inequality (1) of §1. 
We complete the proof of III by showing that 

Pk(P) - > <r3(jS) 

for all /3. It was shown by Cameron and Martin8 that the character­
istic function of <ra(j3) is 

(sec (2Î01/2)1'2 

where sec(2i£)1/2 is defined by the familiar infinite product 

Ü \ ((2» + 1)T/2)»/ ((2» + 1)TT/2)V 

and z1/2 is denned in the plane with negative real axis removed and 
satisfying the requirement that s1'2 is positive for real and positive s. 

It is then sufficient to show that the characteristic function 

remPk({i) 
J o 

approaches (sec(2i£)1/2)1/2 uniformly in every finite ^-interval. We 
have 

ƒ>«<» - ™-£ • • • ƒ> (I s( É •)) 
. .{-it,-},, . . . , , 

•exp | - y - — ]C (y, - y^i)2 |dyi • • • dy*. 

8 Loc. cit. footnote 4. Actually, the characteristic function considered by Cameron 
and Martin is (sec(*£)1/2)1/2 but their case corresponds to the normalization 
m.e.{Gv} = 1 / 2 instead of m.e.{Gy} - 1 . 
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If in the last integral we introduce the coordinate system correspond­
ing to the "principal axes" of the quadratic form 

(13) y\ + E (y, - y^Y 
2 

we notice readily that the integral will be reduced to the form 

J exp u* ^ 2yj exp I T ^ XiZyi rf2;i ' ' ' **' 
where Xi, X2, • • • , X* are the eigenvalues of the matrix of the quad­
ratic form (13). In the last integral the variables are separated and we 
obtain immediately 

^ ^p,0) -n(xy-^r) • 
The branch of 

(15) (A, - lit/V)-1» 

is determined by removing from the complex £-plane the part of the 
imaginary axis between — 00 and — fe2X//2 and requiring that (IS) be 
positive for %=yi, y> — i2X//2. 

One could now calculate explicitly the eigenvalues X/ by elementary 
(but rather tedious) means and pass to the limit as k—> 00. We prefer 
a less elementary method which has the advantage that it is applica­
ble to many cases where the explicit calculation of eigenvalues is im­
possible. 

We first notice that putting £ = 0 in (14) we obtain X1X2 • • • X& = 1 
and hence 

ƒ* °° * / 2 i f X""1/2 

. «"*•<» - S(' s ô • 
Denoting by ((ar8)) the inverse matrix of the matrix of the quadratic 
form (13) we can verify directly that 

art = min (r, s). 
Noticing that 1/Xi, • • • , 1 A * are the eigenvalues of ((ar,)) and using 
Hubert 's approach to Fredholm's theory9 we obtain that the quanti­
ties l/k2\j approach the eigenvalues of the integral equation 

9 See D. Hubert, Grundzüge einer allgemeinen Theorie der linearen Integrdlglei-
chungent Berlin and Leipzig, Teubner, 1912. In particular see Theorem 2 on p. 14. 
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(16) f min (s, t)f{t)dt - \f(s). 
J 0 

Writing (16) in the form 

f°tf(t)dt + sf f(t)dt~\f(s) 

and differentiating twice with respect to 5 we obtain the differential 
equation 

*ƒ"(*)+ƒ(*)-o 

subject to the boundary conditions / (0 )= / ' ( l )=0 . Thus the eigen­
values are the numbers 

((2» + l)*-/2)-* (» - 0, 1, 2, • • • ) 

and it follows that 

ƒ• °° °° / 20: \-l/2 

a W Ü V ((2n + l>/2) V 
- (sec (2i0in)li2

t 

where the determination of (sec(2t£)1/2)1/2 was described above.10 This 
completes the proof of III. 

The proof of IV proceeds as follows. Denoting by Qn(ot) the proba­
bility 

prob. j t t - 8 ' 2 è | s f | <a\ 

we are led to the inequality 

prob. ik-** E I R,\ < a - él - - ^ £ lim inf Qn(a) 
, v I 1 ; cfc1'2 «-» 
(18) 

S lim supQn(a) S prob. \ ft-*'2 E I * i | < * + «> + — ~ • 

We then chose particular random variables whose distribution is given 
by the formula 

prob. {Xi<a} =:—faexp(--2W\u\)du. 

10 That convergence in (17) is uniform in every finite ^-interval also follows from 
Hilbert's considerations quoted above. 
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For these random variables it was proved (loc. cit. footnote 2) that 

lim Qn(a) - <74(a)." 

We complete the proof for the general case in the same way as in the 
proof of I. 

UNIVERSITY OF MICHIGAN AND 
CORNELL UNIVERSITY 

11 Inasmuch as we have not proved that <r4 is continuous this statement should be 
qualified by adding that it holds at each continuity point of 0-4. 

Added in proof: In the meantime Dr. Erdös succeeded in proving that <r4 is every­
where continuous. The proof is quite involved and will not be reproduced here. 


